Skip to main content

Protocols for the In Silico Design of RNA Nanostructures

  • Protocol
Nanostructure Design

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 474))

Summary

Recent developments in the field of nanobiology have significantly expanded the possibilities for new modalities in the treatment of many diseases, including cancer. Ribonucleic acid (RNA) represents a relatively new molecular material for the development of these biologically oriented nanodevices. In addition, RNA nanobiology presents a relatively new approach for the development of RNA-based nanoparticles that can be used as crystallization substrates and scaffolds for RNA-based nanoarrays. Presented in this chapter are some methodological shaped-based protocols for the design of such RNA nanostructures. Included are descriptions and background materials describing protocols that use a database of three-dimensional RNA structure motifs; designed RNA secondary structure motifs; and a combination of the two approaches. An example is also given illustrating one of the protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yano J, Hirabayashi K, Nakagawa S, et al. (2004) Antitumor activity of small interfering RNA/cationic liposome complex in mouse models of cancer. Clin. Cancer Res. 10(22), 7721–7726.

    Article  CAS  Google Scholar 

  2. Schiffelers RM, Ansari A, Xu J, et al. (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res. 32(19), e149.

    Article  Google Scholar 

  3. Howard KA, Rahbek UL, Liu X, et al. (2006) RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol. Ther. 14(4), 476–484.

    Article  CAS  Google Scholar 

  4. Westhof E, Masquida B, Jaeger L. (1996) RNA tectonics: towards RNA design. Fold. Des. 1(4), R78–R88.

    Article  CAS  Google Scholar 

  5. Jaeger L, Westhof E, Leontis NB. (2001) TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic Acids Res. 29(2), 455–463.

    Article  CAS  Google Scholar 

  6. Shapiro BA, Zhang KZ. (1990) Comparing multiple RNA secondary structures using tree comparisons. Comput. Appl. Biosci. 6(4), 309–318.

    CAS  Google Scholar 

  7. Shapiro BA. (1988) An algorithm for comparing multiple secondary structures. Comput. Appl. Biosci. 4(3), 387–93.

    CAS  Google Scholar 

  8. Chworos A, Severcan I, Koyfman AY, et al. (2004) Building programmable jigsaw puzzles with RNA. Science 306(5704), 2068–2072.

    Article  CAS  Google Scholar 

  9. Nasalean L, Baudrey S, Leontis NB, Jaeger L. (2006) Controlling RNA self-assembly to form filaments. Nucleic Acids Res. 34(5), 1381–1392.

    Article  CAS  Google Scholar 

  10. Bates AD, Callen BP, Cooper JM, et al. (2006) Construction and characterization of a gold nanoparticle wire assembled using Mg2+-dependent RNA—RNA interactions. Nano. Lett. 6(3), 445–448.

    Article  CAS  Google Scholar 

  11. Koyfman AY, Braun G, Magonov S, Chworos A, Reich NO, Jaeger L. (2005) Controlled spacing of cationic gold nanoparticles by nanocrown RNA. J. Am. Chem. Soc. 127(34), 11886–11887.

    Article  CAS  Google Scholar 

  12. Shu D, Moll W-D, Deng Z, Mao C, Guo P. (2004) Bottom-up assembly of RNA arrays and superstructures as potential parts in nanotechnology. Nano. Lett. 4(9), 1717–1723.

    Article  CAS  Google Scholar 

  13. Guo P. (2005) RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy. J. Nanosci. Nanotechnol. 5(12), 1964–1982.

    Article  CAS  Google Scholar 

  14. Khaled A, Guo S, Li F, Guo P. (2005) Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano. Lett. 5(9), 1797–1808.

    Article  CAS  Google Scholar 

  15. Guo S, Huang F, Guo P. (2006) Construction of folate-conjugated pRNA of bacteriophage phi29 DNA packaging motor for delivery of chimeric siRNA to nasopharyngeal carcinoma cells. Gene Ther. 13(10), 814–820.

    CAS  Google Scholar 

  16. Jaeger L, Leontis NB. (2000) Tecto-RNA: one-dimensional self-assembly through tertiary interactions. Angew. Chem. Int. Ed. Engl. 39(14), 2521–2524.

    Article  CAS  Google Scholar 

  17. Hansma HG, Oroudjev E, Baudrey S, Jaeger L. (2003) TectoRNA and “ kissing-loop” RNA: atomic force microscopy of self-assembling RNA structures. J. Microsc. 212(Pt. 3), 273–279.

    Article  CAS  Google Scholar 

  18. Horiya S, Li X, Kawai G, et al. (2002) RNA LEGO: magnesium-dependent assembly of RNA building blocks through loop—loop interactions. Nucleic Acids Res. Suppl 2, 41–42.

    Google Scholar 

  19. Horiya S, Li X, Kawai G, et al. (2003) RNA LEGO: magnesium-dependent formation of specific RNA assemblies through kissing interactions. Chem. Biol. 10(7), 645–654.

    Article  CAS  Google Scholar 

  20. Li X, Horiya S, Harada K. (2006) An efficient thermally induced RNA confor-mational switch as a framework for the functionalization of RNA nanostructures. J. Am. Chem. Soc. 128(12), 4035–4040.

    Article  CAS  Google Scholar 

  21. Jaeger L, Chworos A. (2006) The architectonics of programmable RNA and DNA nanostructures. Curr. Opin. Struct. Biol. 16(4), 531–543.

    Article  CAS  Google Scholar 

  22. Chelyapov N, Brun Y, Gopalkrishnan M, Reishus D, Shaw B, Adleman L. (2004) DNA triangles and self-assembled hexagonal tilings. J. Am. Chem. Soc. 126(43), 13924–13925.

    Article  CAS  Google Scholar 

  23. Mathieu F, Liao S, Kopatsch J, Wang T, Mao C, Seeman NC. (2005) Six-helix bundles designed from DNA. Nano. Lett. 5(4), 661–665.

    Article  CAS  Google Scholar 

  24. Berman HM, Westbrook J, Feng Z, et al. (2000) The Protein Data Bank. Nucleic Acids Res. 28(1), 235–242.

    Article  CAS  Google Scholar 

  25. Berman HM, Olson WK, Beveridge DL, et al. (1992) The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J. 63(3), 751–759.

    Article  CAS  Google Scholar 

  26. Tamura M, Hendrix DK, Klosterman PS, Schimmelman NR, Brenner SE, Holbrook SR. (2004) SCOR: Structural Classification of RNA, version 2.0. Nucleic Acids Res. 32(Database issue), D182–D184.

    Article  CAS  Google Scholar 

  27. Klosterman PS, Tamura M, Holbrook SR, Brenner SE. (2002) SCOR: a Structural Classification of RNA database. Nucleic Acids Res. 30(1), 392–394.

    Article  CAS  Google Scholar 

  28. Klosterman PS, Hendrix DK, Tamura M, Holbrook SR, Brenner SE. (2004) Three-dimensional motifs from the SCOR, Structural Classification of RNA database: extruded strands, base triples, tetraloops and U-turns. Nucleic Acids Res. 32(8), 2342–2352.

    Article  CAS  Google Scholar 

  29. Nagaswamy U, Larios-Sanz M, Hury J, et al. (2002) NCIR: a database of non-canonical interactions in known RNA structures. Nucleic Acids Res. 30(1), 395–397.

    Article  CAS  Google Scholar 

  30. Nagaswamy U, Voss N, Zhang Z, Fox GE. (2000) Database of non-canonical base pairs found in known RNA structures. Nucleic Acids Res. 28(1), 375–376.

    Article  CAS  Google Scholar 

  31. 30a. Bindewald E, Hayes R, Yingling YG, Kasprzak W, Shapiro BA. (2008) RNAJunction: a database of RNA junctions and kissing loops for three-dimensional structural analysis and nanodesign. Nucleic Acids Res. 36, D392–D397.

    Article  CAS  Google Scholar 

  32. Gardner PP, Giegerich R. (2004) A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinform. 5, 140–157.

    Article  CAS  Google Scholar 

  33. Mathews DH, Turner DH. (2006) Prediction of RNA secondary structure by free energy minimization. Curr. Opin. Struct. Biol. 16(3), 270–278.

    Article  CAS  Google Scholar 

  34. Rivas E, Eddy SR. (1999) A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285(5), 2053–2068.

    Article  CAS  Google Scholar 

  35. Dirks RM, Pierce NA. (2003) A partition function algorithm for nucleic acid secondary structure including pseudoknots. J. Comput. Chem. 24(13), 1664–1677.

    Article  CAS  Google Scholar 

  36. Reeder J, Giegerich R. (2005) Consensus shapes: an alternative to the Sankoff algorithm for RNA consensus structure prediction. Bioinformatics 21(17), 3516–3523.

    Article  CAS  Google Scholar 

  37. Ruan J, Stormo GD, Zhang W. (2004) An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots. Bioinformatics 20(1), 58–66.

    Article  CAS  Google Scholar 

  38. Ruan J, Stormo GD, Zhang W. (2004) ILM: a Web server for predicting RNA secondary structures with pseudoknots. Nucleic Acids Res. 32(Web Server issue), W146–W149.

    Article  CAS  Google Scholar 

  39. Ren J, Rastegari B, Condon A, Hoos HH. (2005) HotKnots: heuristic prediction of RNA secondary structures including pseudoknots. RNA 11(10), 1494–504.

    Article  CAS  Google Scholar 

  40. Shapiro BA, Yingling YG, Kasprzak W, Bindewald E. (2007) Bridging the gap in RNA structure prediction. Curr. Opin. Struct. Biol. 17(2), 157–165.

    Article  CAS  Google Scholar 

  41. Mathews DH, Sabina J, Zuker M, Turner DH. (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288(5), 911–940.

    Article  CAS  Google Scholar 

  42. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer S, Tacker M, Schuster P. (1994) Fast folding and comparison of RNA secondary structures. Monatsh. Chem. 125, 167–188.

    Article  CAS  Google Scholar 

  43. Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH. (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc. Natl. Acad. Sci. U. S. A. 101(19), 7287–92.

    Article  CAS  Google Scholar 

  44. Ding Y, Chan C Y, Lawrence CE. (2005) RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA 11(8), 1157–1166.

    Article  CAS  Google Scholar 

  45. Chan C Y, Lawrence CE, Ding Y. (2005) Structure clustering features on the Sfold Web server. Bioinformatics 21(20), 3926–3928.

    Article  CAS  Google Scholar 

  46. Giegerich R, Voss B, Rehmsmeier M. Abstract shapes of RNA. Nucleic Acids Res. 32(16), 4843–4851.

    Google Scholar 

  47. Steffen P, Voss B, Rehmsmeier M, Reeder J, Giegerich R. (2006) RNAshapes: an integrated RNA analysis package based on abstract shapes. Bioinformatics 22(4), 500–503.

    Article  CAS  Google Scholar 

  48. Voss B, Giegerich R, Rehmsmeier M. (2006) Complete probabilistic analysis of RNA shapes. BMC Biol. 4(1), 5–27.

    Article  CAS  Google Scholar 

  49. Do CB, Woods DA, Batzoglou S. (2006) CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics 22(14), e90–e98.

    Article  CAS  Google Scholar 

  50. Xayaphoummine A, Bucher T, Isambert H. (2005) Kinefold Web server for RNA/ DNA folding path and structure prediction including pseudoknots and knots. Nucleic Acids Res. 33(Web Server issue), W605–W610.

    Article  CAS  Google Scholar 

  51. Isambert H, Siggia ED. (2000) Modeling RNA folding paths with pseudoknots: application to hepatitis delta virus ribozyme. Proc. Natl. Acad. Sci. U. S. A. 97(12), 6515–6520.

    Article  CAS  Google Scholar 

  52. Holland JH. (1992) Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications in Biology, Control, and Artificial Intelligence. MIT Press, Cambridge, MA.

    Google Scholar 

  53. Shapiro BA, Navetta J. (1994) A massively parallel genetic algorithm for RNA secondary structure prediction. J Supercomputing 8, 195–207.

    Article  Google Scholar 

  54. Shapiro BA, Wu JC. (1996) An annealing mutation operator in the genetic algorithms for RNA folding. Comput. Appl. Biosci. 12(3), 171–180.

    CAS  Google Scholar 

  55. Shapiro BA, Wu JC. (1997) Predicting RNA H-type pseudoknots with the massively parallel genetic algorithm. Comput. Appl. Biosci. 13(4), 459–471.

    CAS  Google Scholar 

  56. Shapiro BA, Bengali D, Kasprzak W, Wu JC. (2001) RNA folding pathway functional intermediates: their prediction and analysis. J. Mol. Biol. 312(1), 27–44.

    Article  CAS  Google Scholar 

  57. Shapiro BA, Wu JC, Bengali D, Potts MJ. (2001) The massively parallel genetic algorithm for RNA folding: MIMD implementation and population variation. Bioinformatics 17(2), 137–148.

    Article  CAS  Google Scholar 

  58. van Batenburg FH, Gultyaev AP, Pleij CW. (1995) An APL-programmed genetic algorithm for the prediction of RNA secondary structure. J. Theor. Biol. 174(3), 269–280.

    Article  Google Scholar 

  59. Gultyaev AP, van Batenburg FH, Pleij CW. (1995) The computer simulation of RNA folding pathways using a genetic algorithm. J. Mol. Biol. 250(1), 37–51.

    Article  CAS  Google Scholar 

  60. Kasprzak W, Bindewald E, Shapiro BA. (2005) Structural polymorphism of the HIV-1 leader region explored by computational methods. Nucleic Acids Res. 33(22), 7151–7163.

    Article  CAS  Google Scholar 

  61. Linnstaedt SD, Kasprzak WK, Shapiro BA, Casey JL. (2006) The role of a meta-stable RNA secondary structure in hepatitis delta virus genotype III RNA editing. RNA 12(8), 1521–1533.

    Article  CAS  Google Scholar 

  62. Shapiro BA, Kasprzak W, Grunewald C, Aman J. (2006) Graphical exploratory data analysis of RNA secondary structure dynamics predicted by the massively parallel genetic algorithm. J. Mol. Graph. Model 25, 514–531.

    Article  CAS  Google Scholar 

  63. Gee AH, Kasprzak W, Shapiro BA. (2006) Structural differentiation of the HIV-1 polyA signals. J. Biomol. Struct. Dyn. 23(4), 417–428.

    CAS  Google Scholar 

  64. Tortorici MA, Shapiro BA, Patton JT. (2006) A base-specific recognition signal in the 5′ consensus sequence of rotavirus plus-strand RNAs promotes replication of the double-stranded RNA genome segments. RNA 12(1), 133–146.

    Article  CAS  Google Scholar 

  65. Zhang J, Zhang G, Guo R, Shapiro BA, Simon AE. (2006) A pseudoknot in a pre-active form of a viral RNA is part of a structural switch activating minus-strand synthesis. J. Virol. 80, 9181–9191.

    Article  CAS  Google Scholar 

  66. Kasprzak W, Shapiro B. (1999) Stem Trace: an interactive visual tool for comparative RNA structure analysis. Bioinformatics 15(1), 16–31.

    Article  CAS  Google Scholar 

  67. Hofacker IL, Fekete M, Stadler PF. (2002) Secondary structure prediction for aligned RNA sequences. J. Mol. Biol. 319(5), 1059–1066.

    Article  CAS  Google Scholar 

  68. Witwer C, Hofacker IL, Stadler PF. (2004) Prediction of consensus RNA secondary structures including pseudoknots. IEEE/ACM Trans. Comput. Biol. Bioinform. 1(2), 66–77.

    Article  CAS  Google Scholar 

  69. Freyhult E, Moulton V, Gardner P. (2005) Predicting RNA structure using mutual information. Appl. Bioinformatics 4, 53–59.

    Article  CAS  Google Scholar 

  70. Jossinet F, Westhof E. (2005) Sequence to Structure (S2S), display, manipulate and interconnect RNA data from sequence to structure. Bioinformatics 21(15), 3320–3321.

    Article  CAS  Google Scholar 

  71. Bindewald E, Shapiro BA. (2006) RNA secondary structure prediction from sequence alignments using a network of k-nearest neighbor classifiers. RNA 12, 342–352.

    Article  CAS  Google Scholar 

  72. Bindewald E, Schneider TD, Shapiro BA. (2006) CorreLogo: an online server for 3D sequence logos of RNA and DNA alignments. Nucleic Acids Res. 34(Web Server issue), W405–W411.

    Article  CAS  Google Scholar 

  73. Aguirre-Hernandez R, Hoos HH, Condon A. (2007) Computational RNA secondary structure design: empirical complexity and improved methods. BMC Bioinform. 8(1), 34.

    Article  CAS  Google Scholar 

  74. Andronescu M, Fejes AP, Hutter F, Hoos HH, Condon A. (2004) A new algorithm for RNA secondary structure design. J. Mol. Biol. 336(3), 607–624.

    Article  CAS  Google Scholar 

  75. Busch A, Backofen R. (2006) INFO-RNA—a fast approach to inverse RNA folding. Bioinformatics 22(15), 1823–1831.

    Article  CAS  Google Scholar 

  76. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer S, Tacker M, Schuster P. (1994) Fast folding and comparison of RNA secondary structures. Monatsh. Chem. 125, 167–188.

    Article  CAS  Google Scholar 

  77. Massire C, Westhof E. (1998) MANIP: an interactive tool for modelling RNA. J. Mol. Graph. Model. 16(4–6), 197–205, 55–57.

    CAS  Google Scholar 

  78. Martinez HM, Maizel JJ, Shapiro BA. RNA2D3D. (2008) A program for generating, viewing, and comparing 3-dimensional models of RNA. JBSD, 25(6), 669–683.

    CAS  Google Scholar 

  79. Macke T, Case D. (1998) Modeling Unusual Nucleic Acid Structures. American Chemical Society, Washington, DC.

    Google Scholar 

  80. Yingling YG, Shapiro BA. (2006) The prediction of the wild-type telomerase RNA pseudoknot structure and the pivotal role of the bulge in its formation. J. Mol. Graph. Model. 25, 261–274.

    Article  CAS  Google Scholar 

  81. Barreda DCJ, Shigenobu Y, Ichiishi E, Del Carpio MC. (2004) RNA 3D structure prediction: (1) assessing RNA 3D structure similarity from 2D structure similarity. Genome Inform. 15(2), 112–120.

    Google Scholar 

  82. Yingling YG, Shapiro BA. (2005) Dynamic behavior of the telomerase RNA hairpin structure and its relationship to dyskeratosis congenita. J. Mol. Biol. 348(1), 27–42.

    Article  CAS  Google Scholar 

  83. Yingling YG, Shapiro BA. (2007) The impact of dyskeratosis congenita mutations on the structure and dynamics of the human telomerase RNA pseudoknot domain. J. Biomol. Struct. Dyn. 24(4), 303–320.

    CAS  Google Scholar 

  84. Pattabiraman N, Martinez HM, Shapiro BA. (2002) Molecular modeling and dynamics studies of HIV-1 kissing loop structures. J. Biomol. Struct. Dyn. 20(3), 397–412.

    CAS  Google Scholar 

  85. Hastings WA, Yingling YG, Chirikjian GS, Shapiro BA. (2006) Structural and dynamical classification of RNA single-base bulges for nanostructure design. J. Comp. Theor. Nanosci. 3, 63–77.

    CAS  Google Scholar 

  86. Li W, Ma B, Shapiro BA. (2003) Binding interactions between the core central domain of 16S rRNA and the ribosomal protein S15 determined by molecular dynamics simulations. Nucleic Acids Res. 31(2), 629–638.

    Article  CAS  Google Scholar 

  87. Li W, Ma B, Shapiro B. (2001) Molecular dynamics simulations of the dena-turation and refolding of an RNA tetraloop. J. Biomol. Struct. Dyn. 19(3), 381–396.

    CAS  Google Scholar 

  88. Cheatham TE, 3rd, Kollman PA. (2000) Molecular dynamics simulation of nucleic acids. Annu. Rev. Phys. Chem. 51, 435–471.

    Article  CAS  Google Scholar 

  89. Cheatham TEI, Young MA. (2001) Molecular dynamics simulations of nucleic acids: successes, limitations, and promise. Biopolymers 56, 232–256.

    Article  Google Scholar 

  90. Zacharias M. (2000) Simulation of the structure and dynamics of nonhelical RNA motifs. Curr. Opin. Struct. Biol. 10(3), 311–317.

    Article  CAS  Google Scholar 

  91. Auffinger P, Vaiana AC. (2005) Molecular Dynamics of RNA Systems. Wiley-VCH Verlag, Weinheim.

    Google Scholar 

  92. Auffinger P, Westhof E. (1998) Simulations of the molecular dynamics of nucleic acids. Curr. Opin. Struct. Biol. 8(2), 227–236.

    Article  CAS  Google Scholar 

  93. Giudice E, Lavery R. (2002) Simulations of nucleic acids and their complexes. Acc. Chem. Res. 35(6), 350–357.

    Article  CAS  Google Scholar 

  94. Lee MS, Salsbury FR Jr, Brooks CL III. (2002) Novel generalized Born methods. J. Chem. Phys. 116, 10606–10614.

    Article  CAS  Google Scholar 

  95. Scarsi M, Apostolakis J, Caflisch A. (1998) Comparison of a GB model with explicit solvent simulations: potentials of mean force and conformational preferences of alanine dipeptide and 1,2-dichloroethane. J. Phys. Chem. B 102, 3637–3641.

    Article  CAS  Google Scholar 

  96. Wang J, Cieplak P, Kollman PA. (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating of organic and biological molecules? J. Comput. Chem. 21, 1049–1074.

    Article  CAS  Google Scholar 

  97. Case DA, Cheatham TE 3rd, Darden T, et al. (2005) The Amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688.

    Article  CAS  Google Scholar 

  98. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. (1983) CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217.

    Article  CAS  Google Scholar 

  99. Phillips JC, Braun R, Wang W, et al. (2005) Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802.

    Article  CAS  Google Scholar 

  100. Lavery R, Sklenar H. (1988) The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J. Biomol. Struct. Dyn. 6(1), 63–91.

    CAS  Google Scholar 

  101. Schlick T. (2006) Molecular modeling and simulation: An interdisciplinary Guide. Springer, New York, New York.

    Google Scholar 

  102. Shapiro BA, Yingling YG. (2006) RNA nanoparticles and nanotubes. Patent pending.

    Google Scholar 

  103. Yingling YG, Shapiro BA. (2007) Computational design of an RNA hexagonal nanoring and an RNA nanotube. Nano Lett. 7(8), 2328–2334.

    Article  CAS  Google Scholar 

  104. Yang H, Jossinet F, Leontis N, et al. (2003) Tools for the automatic identification and classification of RNA base pairs. Nucleic Acids Res. 31(13), 3450–3460.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Robert Hayes, Christine Viets, and Calvin Grunewald for their contributions to the development of our research tools. Computational support was provided in part by the National Cancer Institute's Advanced Biomedical Computing Center. This publication was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research. This publication has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract N01-CO-12400. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, and mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. government.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Shapiro, B.A., Bindewald, E., Kasprzak, W., Yingling, Y. (2008). Protocols for the In Silico Design of RNA Nanostructures. In: Gazit, E., Nussinov, R. (eds) Nanostructure Design. Methods in Molecular Biology™, vol 474. Humana Press. https://doi.org/10.1007/978-1-59745-480-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-480-3_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-35-0

  • Online ISBN: 978-1-59745-480-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics