Skip to main content

Synthesis and Primary Characterization of Self-Assembled Peptide-Based Hydrogels

  • Protocol
Nanostructure Design

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 474))

Summary

Hydrogels based on peptide self-assembly form an important class of biomaterials that find application in tissue engineering and drug delivery. It is essential to prepare peptides with high purity to achieve batch-to-batch consistency affording hydrogels with reproducible properties. Automated solid-phase peptide synthesis coupled with optimized Fmoc (9-fluorenylmethoxy-carbonyl) chemistry to obtain peptides in high yield and purity is discussed. Details of isolating a desired peptide from crude synthetic mixtures and assessment of the peptide's final purity by high-performance liquid chromatography and mass spectrometry are provided. Beyond the practical importance of synthesis and primary characterization, techniques used to investigate the properties of hydrogels are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajagopal K, Schneider JP. (2004) Self-assembling peptides and proteins for nano-technological applications. Curr. Opin. Struct. Biol. 14(4), 480–486.

    Article  CAS  Google Scholar 

  2. Whitesides GM, Mathias JP, Seto CT. (1991) Molecular self-assembly and nano-chemistry — a chemical strategy for the synthesis of nanostructures. Science 254(5036), 1312–1319.

    Article  CAS  Google Scholar 

  3. Carny O, Shalev DE, Gazit E. (2006) Fabrication of coaxial metal nanocables using a self-assembled peptide nanotube scaffold. Nano Lett. 6(8), 1594–1597.

    Article  CAS  Google Scholar 

  4. Ray S, Drew MGB, Das AK, Banerjee A. (2006) The role of terminal tyrosine residues in the formation of tripeptide nanotubes: a crystallographic insight. Tetrahedron 62(31), 7274–7283.

    Article  CAS  Google Scholar 

  5. Crisma M, Toniolo C, Royo S, Jimenez AI, Cativiela C. (2006) A helical, aromatic, peptide nanotube. Org. Lett. 8(26), 6091–6094.

    Article  CAS  Google Scholar 

  6. Leclair S, Baillargeon P, Skouta R, Gauthier D, Zhao Y, Dory YL. (2004) Micrometer-sized hexagonal tubes self-assembled by a cyclic peptide in a liquid crystal. Angew. Chem. Int. Ed. 43(3), 349–353.

    Article  CAS  Google Scholar 

  7. Horne WS, Stout CD, Ghadiri MR. (2003) A heterocyclic peptide nanotube. J. Am. Chem. Soc. 125(31), 9372–9376.

    Article  CAS  Google Scholar 

  8. Amorin M, Castedo L, Granja JR. (2005) Self-assembled peptide tubelets with 7 angstrom pores. Chemistry 11(22), 6543–6551.

    Article  CAS  Google Scholar 

  9. Block MAB, Hecht S. (2005) Wrapping peptide tubes: merging biological self-assembly and polymer synthesis. Angew. Chem. Int. Ed. 44(43), 6986–6989.

    Article  CAS  Google Scholar 

  10. Lu K, Jacob J, Thiyagarajan P, Conticello VP, Lynn DG. (2003) Exploiting amyloid fibril lamination for nanotube self-assembly. J. Am. Chem. Soc. 125(21), 6391–6393.

    Article  CAS  Google Scholar 

  11. Gao X Y, Matsui H. (2005) Peptide-based nanotubes and their applications in bionanotechnology. Adv. Mater. 17(17), 2037–2050.

    Article  CAS  Google Scholar 

  12. Woolfson DN, Ryadnov MG. (2006) Peptide-based fibrous biomaterials: some things old, new and borrowed. Curr. Opin. Chem. Biol. 10(6), 559–567.

    Article  CAS  Google Scholar 

  13. Aggeli A, Nyrkova IA, Bell M, et al. (2001) Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta-sheet tapes, ribbons, fibrils, and fibers. Proc. Natl. Acad. Sci. U. S. A. 98(21), 11857–11862.

    Article  CAS  Google Scholar 

  14. Bitton R, Schmidt J, Biesalski M, Tu R, Tirrell M, Bianco-Peled H. (2005) Self-assembly of model DNA-binding peptide amphiphiles. Langmuir 21(25), 11888–11895.

    Article  CAS  Google Scholar 

  15. Deechongkit S, Powers ET, You SL, Kelly JW. (2005) Controlling the morphology of cross beta-sheet assemblies by rational design. J. Am. Chem. Soc. 127(23), 8562–8570.

    Article  CAS  Google Scholar 

  16. Elgersma RC, Meijneke T, Posthuma G, Rijkers DTS, Liskamp RMJ. (2006) Self-assembly of amylin(20–29) amide-bond derivatives into helical ribbons and peptide nanotubes rather than fibrils. Chemistry 12(14), 3714–3725.

    Article  CAS  Google Scholar 

  17. Lowik D, Garcia-Hartjes J, Meijer JT, van Hest JCM. Tuning secondary structure and self-assembly of amphiphilic peptides. Langmuir 2005;21(2):524–526.

    Article  Google Scholar 

  18. Matsumura S, Uemura S, Mihara H. (2004) Fabrication of nanofibers with uniform morphology by self-assembly of designed peptides. Chemistry 10(11), 2789–2794.

    Article  CAS  Google Scholar 

  19. Zhang SG. (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21(10), 1171–1178.

    Article  CAS  Google Scholar 

  20. Fairman R, Akerfeldt KS. (2005) Peptides as novel smart materials. Curr. Opin. Struct. Biol. 15(4), 453–463.

    Article  CAS  Google Scholar 

  21. Bonzani IC, George JH, Stevens MM. (2006) Novel materials for bone and cartilage regeneration. Curr. Opin. Chem. Biol. 10(6), 568–575.

    Article  CAS  Google Scholar 

  22. Mart RJ, Osborne RD, Stevens MM, Ulijn RV. (2006) Peptide-based stimuli-responsive biomaterials. Soft Matter 2(10), 822–835.

    Article  CAS  Google Scholar 

  23. Nowak AP, Breedveld V, Pakstis L, et al. (2002) Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417(6887), 424–428.

    Article  CAS  Google Scholar 

  24. Stendahl JC, Rao MS, Guler MO, Stupp SI. (2006) Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Adv. Funct. Mater. 16(4), 499–508.

    Article  CAS  Google Scholar 

  25. Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J. (2002) Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 124(50), 15030–15037.

    Article  CAS  Google Scholar 

  26. Caplan MR, Schwartzfarb EM, Zhang SG, Kamm RD, Lauffenburger DA. (2002) Control of self-assembling oligopeptide matrix formation through systematic variation of amino acid sequence. Biomaterials 23(1), 219–227.

    Article  CAS  Google Scholar 

  27. Collier JH, Messersmith PB. (2004) Self-assembling polymer-peptide conjugates: nanostructural tailoring. Adv. Mater. 16(11), 907–910.

    Article  CAS  Google Scholar 

  28. Ramachandran S, Trewhella J, Tseng Y, Yu YB. (2006) Coassembling peptide-based biomaterials: effects of pairing equal and unequal chain length oligopep-tides. Chem. Mater. 18(26), 6157–6162.

    Article  CAS  Google Scholar 

  29. Zhang SG. (2002) Emerging biological materials through molecular self-assembly. Biotechnol. Adv. 20(5–6), 321–339.

    Article  CAS  Google Scholar 

  30. Yang JY, Xu C Y, Wang C, Kopecek J. (2006) Refolding hydrogels self-assembled from N-(2-hydroxypropyl)methacrylamide graft copolymers by antiparallel coiled-coil formation. Biomacromolecules 7(4), 1187–1195.

    Article  Google Scholar 

  31. Shen W, Zhang KC, Kornfield JA, Tirrell DA. (2006) Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nat. Mater. 5(2), 153–158.

    Article  CAS  Google Scholar 

  32. Ciani B, Hutchinson EG, Sessions RB, Woolfson DN. (2002) A designed system for assessing how sequence affects alpha to beta conformational transitions in proteins. J. Biol. Chem. 277(12), 10150–10155.

    Article  CAS  Google Scholar 

  33. Lee HJ, Lee J-S, Chansakul T, Yu C, Elisseeff JH, Yu SM. (2006) Collagen mimetic peptide-conjugated photopolymerizable PEG hydrogel. Biomaterials 27(30), 5268–5276.

    Article  CAS  Google Scholar 

  34. Kotch FW, Raines RT. (2006) Self-assembly of synthetic collagen triple helices. Proc. Natl. Acad. Sci. U. S. A. 103(9), 3028–3033.

    Article  CAS  Google Scholar 

  35. Yang ZM, Liang GL, Wang L, Bing X. (2006) Using a kinase/phosphatase switch to regulate a supramolecular hydrogel and forming the supramoleclar hydrogel in vivo. J. Am. Chem. Soc. 128(9), 3038–3043.

    Article  CAS  Google Scholar 

  36. Jun HW, Yuwono V, Paramonov SE, Hartgerink JD. (2005) Enzyme-mediated degradation of peptide-amphiphile nanofiber networks. Adv. Mater. 17(21), 2612–2617.

    Article  CAS  Google Scholar 

  37. Lutolf MP, Hubbell JA. (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23(1), 47–55.

    Article  CAS  Google Scholar 

  38. Pochan DJ, Schneider JP, Kretsinger J, Ozbas B, Rajagopal K, Haines L. (2003) Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de Novo designed peptide. J. Am. Chem. Soc. 125(39), 11802–11803.

    Article  CAS  Google Scholar 

  39. Ozbas B, Kretsinger J, Rajagopal K, Schneider JP, Pochan DJ. (2004) Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules 37(19), 7331–7337.

    Article  CAS  Google Scholar 

  40. Kretsinger JK, Haines LA, Ozbas B, Pochan DJ, Schneider JP. (2005) Cytocompatibility of self-assembled ss-hairpin peptide hydrogel surfaces. Biomaterials 26(25), 5177–5186.

    Article  CAS  Google Scholar 

  41. Haines LA, Rajagopal K, Ozbas B, Salick DA, Pochan DJ, Schneider JP. (2005) Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 127(48), 17025–17029.

    Article  CAS  Google Scholar 

  42. Rajagopal K, Ozbas B, Pochan DJ, Schneider JP. (2006) Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators. Eur. Biophys. J. Biophys. Lett. 35(2), 162–169.

    Article  CAS  Google Scholar 

  43. Chan WC, White PD. (2000) Fmoc Solid Phase Peptide Synthesis: A Practical Approach. Oxford University Press, New York.

    Google Scholar 

  44. Fields GB, Fields CG. (1991) Solvation effects in solid-phase peptide-synthesis. J. Am. Chem. Soc. 113(11), 4202–4207.

    Article  CAS  Google Scholar 

  45. Kates SA, Sole NA, Beyermann M, Barany G, Albericio F. (1996) Optimized preparation of deca(L-alanyl)-L-valinamide by 9-fluorenylmethyloxycarbonyl (Fmoc) solid-phase synthesis on polyethylene glycol-polystyrene (PEG-PS) graft supports, with 1,8-diazobicyclo[5.4.0]-undec-7-ene (DBU) deprotection. Peptide Res. 9(3), 106–113.

    CAS  Google Scholar 

  46. Angell YM, Alsina J, Albericio F, Barany G. (2002) Practical protocols for step-wise solid-phase synthesis of cysteine-containing peptides. J. Peptide Res. 60(5), 292–299.

    Article  CAS  Google Scholar 

  47. Fasman GD. (1996) Circular Dichroism and the Conformational Analysis of Biomolecules. Plenum Press, New York.

    Google Scholar 

  48. Cantor CR, Schimmel PR. (1980) Biophysical Chemistry. Freeman, New York.

    Google Scholar 

  49. Larson RG. (1999) The Structure and Rheology of Complex Fluids. Oxford University Press, New York.

    Google Scholar 

  50. Williams DB, Carter CB. (1996) Transmission Electron Microscopy: A Textbook for Materials Science. Springer, New York.

    Google Scholar 

  51. Cohen SH, Lightbody ML. (1997) Atomic Force Microscopy/Scanning Tunneling Microscopy 2. Springer, New York.

    Google Scholar 

  52. Higgins JS, Benoît HC. (1997) Polymers and Neutron Scattering. Oxford University Press, New York.

    Google Scholar 

Download references

Acknowledgments

We acknowledge the National Institutes of Health grant R01 DE016386-01. We also thank Lisa A. Haines-Butterick for optimization of the synthesizer chemistry and her helpful discussions for this chapter as well as Karthikan Rajagopal for performing the MAX3 studies.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Nagarkar, R.P., Schneider, J.P. (2008). Synthesis and Primary Characterization of Self-Assembled Peptide-Based Hydrogels. In: Gazit, E., Nussinov, R. (eds) Nanostructure Design. Methods in Molecular Biology™, vol 474. Humana Press. https://doi.org/10.1007/978-1-59745-480-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-480-3_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-35-0

  • Online ISBN: 978-1-59745-480-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics