Skip to main content

Creation of Hybrid Nanorods From Sequences of Natural Trimeric Fibrous Proteins Using the Fibritin Trimerization Motif

  • Protocol
Nanostructure Design

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 474))

Summary

Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, β-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple β-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beck K, Brodsky B. (1998) Supercoiled protein motifs: the collagen triple-helix and the alpha-helical coiled coil. J. Struct. Biol. 122, 17–29.

    Article  CAS  Google Scholar 

  2. Geddes AJ, Parker KD, Atkins ED, Beighton E. (1968) “Cross-beta” conformation in proteins. J. Mol. Biol. 32, 343–358.

    Article  CAS  Google Scholar 

  3. Mitraki A, Miller S, van Raaij MJ. (2002) Review: conformation and folding of novel beta-structural elements in viral fiber proteins: the triple beta-spiral and triple beta-helix. J. Struct. Biol. 137, 236–247.

    Article  CAS  Google Scholar 

  4. Pauling L, Corey RB. (1951) The pleated sheet, a new layer configuration of polypeptide chains. Proc. Natl. Acad. Sci. U. S. A. 37, 251–256.

    Article  CAS  Google Scholar 

  5. Steinbacher S, Seckler R, Miller S, Steipe B, Huber R, Reinemer P. (1994) Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Science 265, 383–386.

    Article  CAS  Google Scholar 

  6. Gazit E. (2007) Use of biomolecular templates for the fabrication of metal nanowires. FEBS J. 274, 317–322.

    Article  CAS  Google Scholar 

  7. Rajagopal K, Schneider JP. (2004) Self-assembling peptides and proteins for nanotechnological applications. Curr. Opin. Struct. Biol. 14, 480–486.

    Article  CAS  Google Scholar 

  8. Woolfson DN, Ryadnov MG. (2006). Peptide-based fibrous biomaterials: some things old, new and borrowed. Curr. Opin. Chem. Biol. 10, 559–567.

    Article  CAS  Google Scholar 

  9. Mitraki A, Papanikolopoulou K, Van Raaij MJ. (2006) Natural triple beta-stranded fibrous folds. Adv. Protein Chem. 73, 97–124.

    Article  CAS  Google Scholar 

  10. Hong JS, Engler JA. (1996) Domains required for assembly of adenovirus type 2 fiber trimers. J. Virol. 70, 7071–7078.

    CAS  Google Scholar 

  11. Novelli A, Boulanger PA. (1991) Deletion analysis of functional domains in baculovirus-expressed adenovirus type 2 fiber. Virology 185, 365–376.

    Article  CAS  Google Scholar 

  12. Mitraki A, Barge A, Chroboczek J, Andrieu JP, Gagnon J, Ruigrok RW. (1999) Unfolding studies of human adenovirus type 2 fibre trimers. Evidence for a stable domain. Eur. J. Biochem. 264, 599–606.

    Article  CAS  Google Scholar 

  13. Papanikolopoulou K, Schoehn G, Forge V, et al. (2005) Amyloid fibril formation from sequences of a natural beta-structured fibrous protein, the adenovirus fiber. J. Biol. Chem. 280, 2481–2490.

    Article  CAS  Google Scholar 

  14. Reches M, Gazit E. (2003) Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627.

    Article  CAS  Google Scholar 

  15. van Raaij MJ, Mitraki A. (2004) Beta-structured viral fibres: assembly, structure and implications for materials design. Curr. Opin. Solid State Mater. Sci. 8, 151–156.

    Article  Google Scholar 

  16. Yemini M, Reches M, Rishpon J, Gazit E. (2005) Novel electrochemical biosens-ing platform using self-assembled peptide nanotubes. Nano. Lett. 5, 183–186.

    Article  CAS  Google Scholar 

  17. Bewley MC, Springer K, Zhang YB, Freimuth P, Flanagan JM. (1999) Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 286, 1579–1583.

    Article  CAS  Google Scholar 

  18. Burmeister WP, Guilligay D, Cusack S, Wadell G, Arnberg N. (2004) Crystal structure of species D adenovirus fiber knobs and their sialic acid binding sites. J. Virol. 78, 7727–7736.

    Article  CAS  Google Scholar 

  19. Krasnykh V, Belousova N, Korokhov N, Mikheeva G, Curiel DT. (2001) Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. J. Virol. 75, 4176–4183.

    Article  CAS  Google Scholar 

  20. Glasgow JN, Everts M, Curiel DT. (2006) Transductional targeting of adenovirus vectors for gene therapy. Cancer Gene Ther. 13, 830–844.

    Article  CAS  Google Scholar 

  21. Nicklin SA, Wu E, Nemerow GR, Baker AH. (2005) The influence of adenovirus fiber structure and function on vector development for gene therapy. Mol. Ther. 12, 384–393.

    Article  CAS  Google Scholar 

  22. Noureddini SC, Curiel DT. (2005) Genetic targeting strategies for adenovirus. Mol. Pharm. 2, 341–347.

    Article  CAS  Google Scholar 

  23. Tao Y, Strelkov SV, Mesyanzhinov VV, Rossmann MG. (1997) Structure of bacteriophage T4 fibritin: a segmented coiled coil and the role of the C-terminal domain. Structure 5, 789–798.

    Article  CAS  Google Scholar 

  24. Frank S, Kammerer RA, Mechling D, et al. (2001) Stabilization of short collagenlike triple helices by protein engineering. J. Mol. Biol. 308, 1081–1089.

    Article  CAS  Google Scholar 

  25. Letarov AV, Londer YY, Boudko SP, Mesyanzhinov VV. (1999) The carboxy-terminal domain initiates trimerization of bacteriophage T4 fibritin. Biochemistry (Mosc.) 64, 817–823.

    CAS  Google Scholar 

  26. Miroshnikov KA, Marusich EI, Cerritelli ME, et al. (1998) Engineering trimeric fibrous proteins based on bacteriophage T4 adhesins. Protein Eng. 11, 329–332.

    Article  CAS  Google Scholar 

  27. Stetefeld J, Frank S, Jenny M, et al. (2003) Collagen stabilization at atomic level. Crystal structure of designed (GlyProPro)(10)foldon. Structure (Camb.) 11, 339–346.

    Article  CAS  Google Scholar 

  28. Yang X, Lee J, Mahony EM, Kwong PD, Wyatt R, Sodroski J. (2002) Highly stable trimers formed by human immunodeficiency virus type 1 envelope glycoproteins fused with the trimeric motif of T4 bacteriophage fibritin. J. Virol. 76, 4634–4642.

    Article  CAS  Google Scholar 

  29. van Raaij MJ, Mitraki A, Lavigne G, Cusack S. (1999) A triple beta-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature 401, 935–938.

    Article  Google Scholar 

  30. Papanikolopoulou K, Forge V, Goeltz P, Mitraki A. (2004) Formation of highly stable chimeric trimers by fusion of an adenovirus fiber shaft fragment with the foldon domain of bacteriophage t4 fibritin. J. Biol. Chem. 279, 8991–8998.

    Article  CAS  Google Scholar 

  31. Papanikolopoulou K, Teixeira S, Belrhali H, Forsyth VT, Mitraki A, van Raaij MJ. (2004) Adenovirus fibre shaft sequences fold into the native triple beta-spiral fold when N-terminally fused to the bacteriophage T4 fibritin foldon trimerisa-tion motif. J. Mol. Biol. 342, 219–227.

    Article  CAS  Google Scholar 

  32. Tabor S. (1990) Expression using the T7 RNA polymerase/promoter system. In: Ausubel FA, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, and Struhl K, eds. Current Protocols in Molecular Biology. New York: Greene and Wiley-Interscience.

    Google Scholar 

  33. King J, Laemmli UK. (1971) Polypeptides of the tail fibres of bacteriophage T4. J. Mol. Biol. 62, 465–477.

    Article  CAS  Google Scholar 

  34. Schwarzer D, Stummeyer K, Gerardy-Schahn R, Muhlenhoff M. (2007) Characterization of a novel intramolecular chaperone domain conserved in endo-sialidases and other bacteriophage tail spike and fiber proteins. J. Biol. Chem. 282, 2821–2831.

    Article  CAS  Google Scholar 

  35. Jancarik J, Kim SH. (1991) Sparse matrix sampling: a screening method for crystallization of proteins. J. Appl. Cryst. 24, 409–411.

    Article  CAS  Google Scholar 

  36. Bergfors T. (1999)Protein Crystallization Techniques. International University Line, La Jolla, CA.

    Google Scholar 

  37. McPherson A. (1989)Preparation and Analysis of Protein. Crystals. Krieger, Malabar, FL.

    Google Scholar 

  38. McPherson A. (2004) Introduction to protein crystallization. Methods 34, 254–265.

    Article  CAS  Google Scholar 

  39. McPherson A. (2003) Macromolecular crystallization in the structural genomics era. J. Struct. Biol. 142, 1–2.

    Article  Google Scholar 

  40. Foster MP, McElroy CA, Amero CD. (2007) Solution NMR of large molecules and assemblies. Biochemistry 46, 331–340.

    Article  CAS  Google Scholar 

  41. Hope H. (1990) Crystallography of biological macromolecules at ultra-low temperature. Annu. Rev. Biophys. Biophys. Chem. 19, 107–126.

    Article  CAS  Google Scholar 

  42. Massover WH. (2007) Radiation damage to protein specimens from electron beam imaging and diffraction: a mini-review of anti-damage approaches, with special reference to synchrotron X-ray crystallography. J. Synchrotron Radiat. 14, 116–127.

    Article  CAS  Google Scholar 

  43. Rossmann MG. (2001) Molecular replacement—historical background. Acta Crystallogr. 57, 1360–1366.

    Article  CAS  Google Scholar 

  44. Ealick SE. (200) Advances in multiple wavelength anomalous diffraction crystallography. Curr. Opin. Chem. Biol. 4, 495–499.

    Article  CAS  Google Scholar 

  45. Dodson E. (2003) Is it jolly SAD? Acta Crystallogr. 59, 1958–1965.

    Article  Google Scholar 

  46. Hendrickson W. (1999) Maturation of MAD phasing for the determination of macromolecular structures. J. Synchrotron Radiat. 6, 845–851.

    Article  CAS  Google Scholar 

  47. Garman E, Murray JW. (2003) Heavy-atom derivatization. Acta Crystallogr. 59, 1903–1913.

    Article  Google Scholar 

  48. Hendrickson WA, Horton JR, LeMaster DM. (1990) Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9, 1665–1672.

    CAS  Google Scholar 

  49. Doublie S, Carter C. (1992) Preparation of Selenomethionyl Protein Crystals. Oxford University Press, New York.

    Google Scholar 

  50. Taylor G. (2003) The phase problem. Acta Crystallogr. 59, 1881–1890.

    Article  Google Scholar 

  51. Blow D. (2002) Outline of Crystallography for Biologists. Oxford University Press, New York.

    Google Scholar 

  52. Carter C. (2003) Methods in Enzymology Parts C and D. Elsevier, New York.

    Google Scholar 

  53. Drenth J. (1999) Principles of Protein X-ray Crystallography. Springer-Verlag, New York.

    Google Scholar 

  54. McPherson A. (2002) Introduction to Macromolecular Crystallography. Wiley, New York.

    Google Scholar 

  55. McRee D. (1999) Practical Protein Crystallography. Academic Press, New York.

    Google Scholar 

  56. Rhodes G. (1993) Crystallography Made Crystal Clear. Academic Press, New York.

    Google Scholar 

  57. Morris RJ, Perrakis A, Lamzin VS. (2003) ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol. 374, 229–244.

    Article  CAS  Google Scholar 

  58. Murshudov GN, Vagin AA, Dodson EJ. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. 53, 240–255.

    Article  CAS  Google Scholar 

  59. Lovell SC, Davis IW, Arendall WB 3rd, et al. (2003) Structure validation by C-alpha geometry: phi,psi and Cbeta deviation. Proteins 50, 437–450.

    Article  CAS  Google Scholar 

  60. Holm L, Sander C. (1999) Protein folds and families: sequence and structure alignments. Nucleic Acids Res. 27, 244–247.

    Article  CAS  Google Scholar 

  61. Boudko SP, Strelkov S V, Engel J, Stetefeld J. (2004) Design and crystal structure of bacteriophage T4 fibritin NCCF. J. Mol. Biol. 339, 927–935.

    Article  CAS  Google Scholar 

  62. DeLano WL. (2002) The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA. Available at: http://www.pymol.org.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Papanikolopoulou, K., van Raaij, M.J., Mitraki, A. (2008). Creation of Hybrid Nanorods From Sequences of Natural Trimeric Fibrous Proteins Using the Fibritin Trimerization Motif. In: Gazit, E., Nussinov, R. (eds) Nanostructure Design. Methods in Molecular Biology™, vol 474. Humana Press. https://doi.org/10.1007/978-1-59745-480-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-480-3_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-35-0

  • Online ISBN: 978-1-59745-480-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics