Skip to main content

What Can We Learn From Highly Connected ß-Rich Structures for Structural Interface Design?

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 474))

Summary

Most hubs' binding sites are able to transiently interact with numerous proteins. We focus on β-rich hubs with the goal of inferring features toward design. Since they are able to interact with many partners and association of β-conformations may lead to amyloid fibrils, we ask whether there is some property that distinguishes them from low-connectivity β-rich proteins, which may be more interaction specific. Identification of such features should be useful as they can be incorporated in interface design while avoiding polymerization into fibrils. We classify the proteins in the yeast interaction map according to the types of their secondary structures. The small number of the obtained β-rich protein structures in the Protein Data Bank likely reflects their low occurrence in the proteome. Analysis of the obtained structures indicates that highly connected β-rich proteins tend to have clusters of conserved residues in their cores, unlike β-rich structures with low connectivity, suggesting that the highly packed conserved cores are important to the stability of proteins, which have residue composition and sequence prone to β-structure and amyloid formation. The enhanced stability may hinder partial unfolding, which, depending on the conditions, is more likely to lead to polymerization of these sequences.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Pellegrini M, Haynor D, Johnson JM. (2004) Protein interaction networks. Expert Rev. Proteomics 1(2), 239–249.

    Article  CAS  Google Scholar 

  2. Jeong H, Mason SP, Barabasi AL, Oltvai ZN. (2001) Lethality and centrality in protein networks. Nature 411(6833), 41–42.

    Article  CAS  Google Scholar 

  3. Hahn MW, Conant GC, Wagner A. (2004) Molecular evolution in large genetic networks: does connectivity equal constraint? J. Mol. Evol. 58(2), 203–211.

    Article  CAS  Google Scholar 

  4. Fraser HB, Hirsh AE. (2004) Evolutionary rate depends on number of protein-protein interactions independently of gene expression level. BMC Evol. Biol. 4, 13.

    Article  Google Scholar 

  5. Bloom JD, Adami C. (2003) Apparent dependence of protein evolutionary rate on number of interactions is linked to biases in protein—protein interactions data sets. BMC Evol. Biol. 3, 21.

    Article  Google Scholar 

  6. Bloom JD, Adami C. (2003) Evolutionary rate depends on number of protein— protein interactions independently of gene expression level: response. BMC Evol. Biol. 4, 14.

    Article  Google Scholar 

  7. Keskin O, Nussinov R. (2007) Similar binding sites and different partners: implications to shared proteins in cellular pathways. Structure 15, 341–354.

    Article  CAS  Google Scholar 

  8. Gunasekaran K, Ramakrishnan C, Balaram P. (1997) Beta-Hairpins in proteins revisited: lessons for de novo design. Protein Eng. 10(10), 1131–1141.

    Article  CAS  Google Scholar 

  9. de la Cruz X, Hutchinson EG, Shepherd A, Thornton JM. (2002) Toward predicting protein topology: an approach to identifying beta hairpins. Proc. Natl. Acad. Sci. U. S. A. 99(17), 11157–11162.

    Article  Google Scholar 

  10. Fooks HM, Martin AC, Woolfson DN, Sessions RB, Hutchinson EG. (2006) Amino acid pairing preferences in parallel beta-sheets in proteins. J. Mol. Biol. 356(1), 32–44.

    Article  CAS  Google Scholar 

  11. Serpell LC, Sunde M, Blake CC. (1997) The molecular basis of amyloidosis. Cell. Mol. Life Sci. 53(11–12), 871–887.

    Article  CAS  Google Scholar 

  12. Richardson JS, Richardson DC. (2002) Natural β-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc. Natl. Acad. Sci. U. S. A. 99(5), 2754–2759.

    Article  CAS  Google Scholar 

  13. Mousseau N, Derreumaux P. (2005) Exploring the early steps of amyloid peptide aggregation by computers. Acc. Chem. Res. 38(11), 885–891.

    Article  CAS  Google Scholar 

  14. Santini S, Mousseau N, Derreumaux P. (2004) In silico assembly of Alzheimer's Abeta16–22 peptide into beta-sheets. J. Am. Chem. Soc. 126(37), 11509–11516.

    Article  CAS  Google Scholar 

  15. Langedijk JP, Fuentes G, Boshuizen R, Bonvin AM. (2006) Two-rung model of a left-handed beta-helix for prions explains species barrier and strain variation in transmissible spongiform encephalopathies. J. Mol. Biol. 360(4), 907–920.

    Article  CAS  Google Scholar 

  16. Tsai CJ, Xu D, Nussinov R. (1997) Structural motifs at protein—protein interfaces: protein cores versus two-state and three-state model complexes. Protein Sci. 6, 1793–1805.

    Article  CAS  Google Scholar 

  17. Remaut H, Waksman G. (2006) Protein—protein interaction through β-strand addition. Trends Biochem. Sci. 31, 436–444.

    Article  CAS  Google Scholar 

  18. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. U. S. A. 98(8), 4569–4574.

    Article  CAS  Google Scholar 

  19. Uetz P, Giot L, Cagney G, et al. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403 (6770), 623–27.

    Article  CAS  Google Scholar 

  20. Ho Y, Gruhler A, Heilbut A, et al. (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868), 180–183.

    Article  CAS  Google Scholar 

  21. Gavin AC, Bosche M, Krause R, et al. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868), 141–147.

    Article  CAS  Google Scholar 

  22. Laskowski RA. (2001) PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res. 29(1), 221–222.

    Article  CAS  Google Scholar 

  23. Schwikowski B, Uetz P, Fields S. (2000) A network of protein—protein interactions in yeast. Nat. Biotechnol. 18(12), 1257–1261.

    Article  CAS  Google Scholar 

  24. Tsai CJ, Zheng J, Zanuy D, et al. (2007) Principles of nanostructure design with protein building blocks. Proteins 68(1), 1–12.

    Article  CAS  Google Scholar 

  25. Haspel N, Zanuy D, Zheng J, Aleman C, Wolfson H, Nussinov R. (2007) Changing the charge distribution of {beta}-helical based nanostructures can provide the conditions for charge transfer. Biophys. J. 93(1), 245–253.

    Article  CAS  Google Scholar 

  26. Tsai CJ, Zheng J, Alemán C, Nussinov R. (2006) Structure by design: from single proteins and their building blocks to nanostructures. Trends Biotechnol. 24, 449–454.

    Article  CAS  Google Scholar 

  27. Zanuy D, Nussinov R, Alemán C. (2006) From peptide-based material science to protein fibrils: discipline convergence in nanobiology. Phys. Biol. 3, S80–S90.

    Article  CAS  Google Scholar 

  28. Alemán C, Zanuy D, Jiménez AI, et al. (2006) Concepts and schemes for the re-engineering of physical protein modules: generating nanodevices via targeted replacements with constrained amino acids. Phys. Biol. 3, S54–S62.

    Article  Google Scholar 

  29. Tsai CJ, Zheng J, Nussinov R. (2006) Designing a nanotube using naturally occurring protein building blocks. PLoS Comput. Biol. 2, e42.

    Article  Google Scholar 

  30. Zheng J, Zanuy D, Haspel N, Tsai CJ, Aleman C, Nussinov R. (2007) Nanostructure design using protein building blocks enhanced by conformation-ally constrained synthetic residues. Biochemistry 46, 1205–1218.

    Article  CAS  Google Scholar 

  31. Berman HM, Battistuz T, Bhat TN, et al. (2000) The Protein Data Bank. Nucleic Acids Res. 28, 235–242.

    Article  CAS  Google Scholar 

  32. Boeckmann B, Bairoch A, Apweiler R, et al. (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370.

    Article  CAS  Google Scholar 

  33. Altschul SF, Madden TL, Schaffer AA, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  CAS  Google Scholar 

  34. Marcotte EM, Xenarios I, Eisenberg D. (2001) Mining literature for protein-protein interactions. Bioinformatics 17, 359–363.

    Article  CAS  Google Scholar 

  35. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. (2004) The Database of Interacting Proteins: update. Nucleic Acids Res. 32, 449–451.

    Article  Google Scholar 

  36. Hamelryck T, Manderick, B. (2003) PDB file parser and structure class implemented in Python. Bioinformatics 19(17), 2308–2310.

    Article  CAS  Google Scholar 

  37. Glaser F, Rosenberg Y, Kessel A, Pupko T, Ben-Tal N. (2005) The ConSurf-HSSP database: the mapping of evolutionary conservation among homologs onto PDB structures. Proteins 58, 610–617.

    Article  CAS  Google Scholar 

  38. Apweiler R, Bairoch A, Wu CH, et al. (2004) UniProt: the Universal Protein Knowledgebase. Nucleic Acids Res. 32, D115–D119.

    Article  CAS  Google Scholar 

  39. Glaser F, Pupko T, Paz I, et al. (2003) ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19, 163–164.

    Article  CAS  Google Scholar 

  40. Lee B, Richards FM. (1971) The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol 55, 379–400.

    Article  CAS  Google Scholar 

  41. Haliloglu T, Keskin O, Ma B, Nussinov R. (2005) How similar are protein folding and protein binding nuclei? Examination of vibrational motions of energy hot spots and conserved residues. Biophys. J. 88, 1552–1559.

    Article  CAS  Google Scholar 

  42. Keskin O, Ma B, Nussinov R. (2005) Hot regions in protein—protein interactions: the organization and contribution of structurally conserved hot spot residues. J. Mol. Biol. 345, 1281–1294.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The dataset of proteins used in this study was generated by Kristina Rogale. We thank Isil Ulug in the analysis for bulges. This research was supported in part by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research and was funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract NO1-CO-12400. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, and mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. government. T. Haliloglu acknowledges the Turkish Academy of Sciences in the framework of the Young Scientist Award Program (EA-TUBA-GEBIP/2001-1-1), State Planning Organization grants 03K120250 and EU_FP6-2004-ACC-SSA-2: Project 517991.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Emekli, U., Gunasekaran, K., Nussinov, R., Haliloglu, T. (2008). What Can We Learn From Highly Connected ß-Rich Structures for Structural Interface Design?. In: Gazit, E., Nussinov, R. (eds) Nanostructure Design. Methods in Molecular Biology™, vol 474. Humana Press. https://doi.org/10.1007/978-1-59745-480-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-480-3_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-35-0

  • Online ISBN: 978-1-59745-480-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics