Skip to main content

Gene Modification in Embryonic Stem Cells by Single-Stranded DNA Oligonucleotides

  • Protocol
  • First Online:
Gene Knockout Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 530))

Abstract

Oligonucleotide-mediated gene targeting is an attractive alternative to current procedures to subtly modify the genome of mouse embryonic stem (ES) cells. However, oligonucleotide-directed substitution, insertion or deletion of a single or a few nucleotides was hampered by DNA mismatch repair (MMR). We have developed strategies to circumvent this problem based on findings that the central MMR protein MSH2 acts in two different mismatch recognition complexes: MSH2/MSH6, which mainly recognizes base substitutions; and MSH2/MSH3, which has more affinity for larger loops. We found that oligonucleotide-mediated base substitution could effectively be obtained upon transient suppression of MSH2 protein level, while base insertions were effective in ES cells deficient for MSH3. This method allows substitution of any codon of interest in the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Capecchi MR. Altering the genome by homologous recombination. Science 1989;244:1288–92.

    Article  PubMed  CAS  Google Scholar 

  2. Hasty P, Ramirez-Solis R, Krumlauf R, Bradley A. Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature 1991;350:243–6.

    Article  PubMed  CAS  Google Scholar 

  3. Gu H, Zou YR, Rajewsky K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 1993;73:1155–64.

    Article  PubMed  CAS  Google Scholar 

  4. Moerschell RP, Tsunasawa S, Sherman F. Transformation of yeast with synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA 1988;85:524–8.

    Google Scholar 

  5. Campbell CR, Keown W, Lowe L, Kirschling D, Kucherlapati R. Homologous recombination involving small single-stranded oligonucleotides in human cells. New Biol. 1989;1:223–7.

    PubMed  CAS  Google Scholar 

  6. Cole-Strauss A, Yoon K, Xiang Y, et al. Correction of the mutation responsible for sickle cell anemia by an RNA–DNA oligonucleotide. Science 1996;273:1386–9.

    Article  PubMed  CAS  Google Scholar 

  7. Liu L, Rice MC, Kmiec EB. In vivo gene repair of point and frameshift mutations directed by chimeric RNA/DNA oligonucleotides and modified single-stranded oligonucleotides. Nucleic Acids Res. 2001;29:4238–50.

    Article  PubMed  CAS  Google Scholar 

  8. Igoucheva O, Alexeev V, Yoon K. Targeted gene correction by small single-stranded oligonucleotides in mammalian cells. Gene Ther. 2001;8:391–9.

    Article  PubMed  CAS  Google Scholar 

  9. Wang G, Seidman MM, Glazer PM. Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science 1996;271:802–5.

    Article  PubMed  CAS  Google Scholar 

  10. Oh TJ, May GD. Oligonucleotide-directed plant gene targeting. Curr. Opin. Biotechnol. 2001;12:169–72.

    Article  PubMed  CAS  Google Scholar 

  11. Liu L, Rice MC, Drury M, Cheng S, Gamper H, Kmiec EB. Strand bias in targeted gene repair is influenced by transcriptional activity. Mol. Cell Biol. 2002;22:3852–63.

    Article  PubMed  CAS  Google Scholar 

  12. Igoucheva O, Alexeev V, Pryce M, Yoon K. Transcription affects formation and processing of intermediates in oligonucleotide-mediated gene alteration. Nucleic Acids Res. 2003;31:2659–70.

    Article  PubMed  CAS  Google Scholar 

  13. Li XT, Costantino N, Lu LY, et al. Identification of factors influencing strand bias in oligonucleotide-mediated recombination in Escherichia coli. Nucleic Acids Res. 2003;31:6674–87.

    Article  PubMed  CAS  Google Scholar 

  14. Ferrara L, Kmiec EB. Camptothecin enhances the frequency of oligonucleotide-directed gene repair in mammalian cells by inducing DNA damage and activating homologous recombination. Nucleic Acids Res. 2004;32:5239–48.

    Article  PubMed  CAS  Google Scholar 

  15. Ferrara L, Kmiec EB. Targeted gene repair activates Chk1 and Chk2 and stalls replication in corrected cells. DNA Repair (Amst) 2006;5:422–31.

    Article  CAS  Google Scholar 

  16. Igoucheva O, Alexeev V, Yoon K. Differential cellular responses to exogenous DNA in mammalian cells and its effect on oligonucleotide-directed gene modification. Gene Ther. 2006;13:266–75.

    Article  PubMed  CAS  Google Scholar 

  17. Dekker M, Brouwers C, te Riele H. Targeted gene modification in mismatch-repair-deficient embryonic stem cells by single-stranded DNA oligonucleotides. Nucleic Acids Res. 2003;31:e27.

    Google Scholar 

  18. de Wind N, Dekker M, Berns A, Radman M, te Riele H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 1995;82:321–30.

    Google Scholar 

  19. Costantino N, Court DL. Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants. Proc. Natl. Acad. Sci. USA 2003;100:15748–53.

    Google Scholar 

  20. Kolodner R. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 1996;10:1433–42.

    Article  PubMed  CAS  Google Scholar 

  21. Dekker M, Brouwers C, Aarts M, et al. Effective oligonucleotide-mediated gene disruption in ES cells lacking the mismatch repair protein MSH3. Gene Ther. 2006;13:686–94.

    Article  PubMed  CAS  Google Scholar 

  22. Aarts M, Dekker M, de Vries S, van der Wal A, te Riele H. Generation of a mouse mutant by oligonucleotide-mediated gene modification in ES cells. Nucleic Acids Res. 2006;34:e147.

    Google Scholar 

  23. Smith AG, Hooper ML. Buffalo rat liver cells produce a diffusible activity which inhibits the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev. Biol. 1987;121:1–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support for our work on oligonucleotide-mediated gene modification from the Dutch Cancer Society (NKI 2000-2233) and the Netherlands Genomics Initiative (050-71-007 and 050-71-051).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Aarts, M. et al. (2009). Gene Modification in Embryonic Stem Cells by Single-Stranded DNA Oligonucleotides. In: Wurst, W., Kühn, R. (eds) Gene Knockout Protocols. Methods in Molecular Biology, vol 530. Humana Press. https://doi.org/10.1007/978-1-59745-471-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-471-1_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-26-8

  • Online ISBN: 978-1-59745-471-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics