Skip to main content

Differentiation Analysis of Pluripotent Mouse Embryonic Stem (ES) Cells In Vitro

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 530))

Abstract

Pluripotent embryonic stem (ES) cells are characterized by their almost unlimited potential to self-renew and to differentiate into virtually any cell type of the organism. Here we describe basic protocols for the in vitro differentiation of mouse ES cells into cells of the cardiac, neuronal, pancreatic, and hepatic lineage. The protocols include (1) the formation of embryoid bodies (EBs) followed by (2) the spontaneous differentiation of EBs into progenitor cells of the ecto-, endo-, and mesodermal germ layer and (3) the directed differentiation of early progenitors into the respective lineages. Differentiation induction via growth and extracellular matrix factors leads to titin-expressing spontaneously beating cardiac cells, tyrosine hydroxylase-expressing dopaminergic neurons, insulin and c-peptide co-expressing pancreatic islet-like clusters, and albumin-positive hepatic cells, respectively. The differentiated cells show tissue-specific proteins and electrophysiological properties (action potentials and ion channels) in cardiac and neuronal cells, glucose-dependent insulin release in pancreatic cells, or glycogen storage and albumin synthesis in hepatic cells. The protocols presented here provide basic systems to study differentiation processes in vitro and to establish strategies for the use of stem cells in regenerative therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wobus, A.M. and Boheler, K.R. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 2005;85:635–78.

    Article  PubMed  CAS  Google Scholar 

  2. Doetschman, T.C., Eistetter, H., Katz, M., Schmidt, W., and Kemler, R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 1985;87:27–45.

    PubMed  CAS  Google Scholar 

  3. Evans, M.J. and Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292:154–6.

    Article  PubMed  CAS  Google Scholar 

  4. Martin, G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981;78:7634–8.

    Google Scholar 

  5. Wobus, A.M., Holzhausen, H., Jakel, P., and Schoneich, J. Characterization of a pluripotent stem cell line derived from a mouse embryo. Exp Cell Res 1984;152:212–9.

    Article  PubMed  CAS  Google Scholar 

  6. Stewart, C.L., Gadi, I., and Bhatt, H. Stem cells from primordial germ cells can reenter the germ line. Dev Biol 1994;161:626–8.

    Article  PubMed  CAS  Google Scholar 

  7. Prelle, K., Vassiliev, I.M., Vassilieva, S.G., Wolf, E., and Wobus, A.M. Establishment of pluripotent cell lines from vertebrate species – present status and future prospects. Cells Tissues Organs 1999;165:220–36.

    Article  PubMed  CAS  Google Scholar 

  8. Familari, M. and Selwood, L. The potential for derivation of embryonic stem cells in vertebrates. Mol Reprod Dev 2006;73:123–31.

    Article  PubMed  CAS  Google Scholar 

  9. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S. et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145–7.

    Article  PubMed  CAS  Google Scholar 

  10. Guhr, A., Kurtz, A., Friedgen, K., and Loser, P. Current state of human embryonic stem cell research: an overview of cell lines and their use in experimental work. Stem Cells 2006;24:2187–91.

    Article  PubMed  Google Scholar 

  11. Hovatta, O. Derivation of human embryonic stem cell lines, towards clinical quality. Reprod Fertil Dev 2006;18:823–8.

    Article  PubMed  Google Scholar 

  12. Loeser, P. and Wobus, A.M. Aktuelle Entwicklungen in der Forschung mit humanen embryonalen Stammzellen. Naturwiss. Rundsch. 2007;60:229–37.

    Google Scholar 

  13. Ware, C.B., Nelson, A.M., and Blau, C.A. A comparison of NIH-approved human ESC lines. Stem Cells 2006;24:2677–84.

    Article  PubMed  CAS  Google Scholar 

  14. Williams, R.L., Hilton, D.J., Pease, S. et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 1988;336:684–7.

    Article  PubMed  CAS  Google Scholar 

  15. Burdon, T., Chambers, I., Stracey, C., Niwa, H., and Smith, A. Signaling mechanisms regulating self-renewal and differentiation of pluripotent embryonic stem cells. Cells Tissues Organs 1999;165:131–43.

    Article  PubMed  CAS  Google Scholar 

  16. Rohwedel, J., Sehlmeyer, U., Shan, J., Meister, A., and Wobus, A.M. Primordial germ cell-derived mouse embryonic germ (EG) cells in vitro resemble undifferentiated stem cells with respect to differentiation capacity and cell cycle distribution. Cell Biol Int 1996;20:579–87.

    Article  PubMed  CAS  Google Scholar 

  17. Solter, D. and Knowles, B.B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci USA 1978;75:5565–9.

    Google Scholar 

  18. Armstrong, L., Lako, M., Lincoln, J., Cairns, P.M., and Hole, N. mTert expression correlates with telomerase activity during the differentiation of murine embryonic stem cells. Mech Dev 2000;97:109–16.

    Article  PubMed  CAS  Google Scholar 

  19. Prelle, K., Zink, N., and Wolf, E. Pluripotent stem cells – model of embryonic development, tool for gene targeting, and basis of cell therapy. Anat Histol Embryol 2002;31:169–86.

    Article  PubMed  Google Scholar 

  20. Scholer, H.R., Hatzopoulos, A.K., Balling, R., Suzuki, N., and Gruss, P. A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO J 1989;8:2543–50.

    PubMed  CAS  Google Scholar 

  21. Chambers, I., Colby, D., Robertson, M. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003;113:643–55.

    Article  PubMed  CAS  Google Scholar 

  22. Mitsui, K., Tokuzawa, Y., Itoh, H. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003;113:631–42.

    Article  PubMed  CAS  Google Scholar 

  23. Niwa, H., Miyazaki, J., and Smith, A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000;24:372–6.

    Article  PubMed  CAS  Google Scholar 

  24. Ying, Q.L., Nichols, J., Chambers, I., and Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 2003;115:281–92.

    Article  PubMed  CAS  Google Scholar 

  25. Hoffman, J.A. and Merrill, B.J. New and renewed perspectives on embryonic stem cell pluripotency. Front Biosci 2007;12:3321–32.

    Article  PubMed  CAS  Google Scholar 

  26. Rao, S. and Orkin, S.H. Unraveling the transcriptional network controlling ES cell pluripotency. Genome Biol 2006;7:230.

    Article  PubMed  Google Scholar 

  27. Wang, J., Rao, S., Chu, J., Shen, X., Levasseur, D.N., Theunissen, T.W., and Orkin, S.H. A protein interaction network for pluripotency of embryonic stem cells. Nature 2006;444:364–8.

    Article  PubMed  CAS  Google Scholar 

  28. Boiani, M. and Scholer, H.R. Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 2005;6:872–84.

    Article  PubMed  CAS  Google Scholar 

  29. Bradley, A., Evans, M., Kaufman, M.H., and Robertson, E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 1984;309:255–6.

    Article  PubMed  CAS  Google Scholar 

  30. Wobus, A.M., Guan, K., Yang, H.T., and Boheler, K.R. Embryonic stem cells as a model to study cardiac, skeletal muscle, and vascular smooth muscle cell differentiation. Methods Mol Biol 2002;185:127–56.

    PubMed  CAS  Google Scholar 

  31. Wobus, A.M., Wallukat, G., and Hescheler, J. Pluripotent mouse embryonic stem cells are able to differentiate into cardiomyocytes expressing chronotropic responses to adrenergic and cholinergic agents and Ca2+ channel blockers. Differentiation 1991;48:173–82.

    Article  PubMed  CAS  Google Scholar 

  32. Wiles, M.V. and Keller, G. Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 1991;111:259–67.

    PubMed  CAS  Google Scholar 

  33. Kawasaki, H., Mizuseki, K., Nishikawa, S. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 2000;28:31–40.

    Article  PubMed  CAS  Google Scholar 

  34. Ying, Q.L., Stavridis, M., Griffiths, D., Li, M., and Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 2003;21:183–6.

    Article  PubMed  CAS  Google Scholar 

  35. Boheler, K.R., Czyz, J., Tweedie, D., Yang, H.T., Anisimov, S.V., and Wobus, A.M. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res 2002;91:189–201.

    Article  PubMed  CAS  Google Scholar 

  36. Maltsev, V.A., Rohwedel, J., Hescheler, J., and Wobus, A.M. Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech Dev 1993;44:41–50.

    Article  PubMed  CAS  Google Scholar 

  37. Drab, M., Haller, H., Bychkov, R. et al. From totipotent embryonic stem cells to spontaneously contracting smooth muscle cells: a retinoic acid and db-cAMP in vitro differentiation model. FASEB J 1997;11:905–15.

    PubMed  CAS  Google Scholar 

  38. Yamashita, J., Itoh, H., Hirashima, M. et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 2000;408:92–6.

    Article  PubMed  CAS  Google Scholar 

  39. Rohwedel, J., Maltsev, V., Bober, E., Arnold, H.H., Hescheler, J., and Wobus, A.M. Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev Biol 1994;164:87–101.

    Article  PubMed  CAS  Google Scholar 

  40. Nishikawa, S.I., Nishikawa, S., Hirashima, M., Matsuyoshi, N., and Kodama, H. Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 1998;125:1747–57.

    PubMed  CAS  Google Scholar 

  41. Dani, C., Smith, A.G., Dessolin, S. et al. Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci 1997;110:1279–85.

    PubMed  CAS  Google Scholar 

  42. Kramer, J., Hegert, C., Guan, K., Wobus, A.M., Muller, P.K., and Rohwedel, J. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech Dev 2000;92:193–205.

    Article  PubMed  CAS  Google Scholar 

  43. Risau, W., Sariola, H., Zerwes, H.G. et al. Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 1988;102:471–8.

    PubMed  CAS  Google Scholar 

  44. Bain, G., Kitchens, D., Yao, M., Huettner, J.E., and Gottlieb, D.I. Embryonic stem cells express neuronal properties in vitro. Dev Biol 1995;168:342–57.

    Article  PubMed  CAS  Google Scholar 

  45. Fraichard, A., Chassande, O., Bilbaut, G., Dehay, C., Savatier, P., and Samarut, J. In vitro differentiation of embryonic stem cells into glial cells and functional neurons. J Cell Sci 1995;108:3181–8.

    PubMed  CAS  Google Scholar 

  46. Lee, S.H., Lumelsky, N., Studer, L., Auerbach, J.M., and McKay, R.D. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 2000;18:675–9.

    Article  PubMed  CAS  Google Scholar 

  47. Okabe, S., Forsberg-Nilsson, K., Spiro, A.C., Segal, M., and McKay, R.D. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 1996;59:89–102.

    Article  PubMed  CAS  Google Scholar 

  48. Strubing, C., Ahnert-Hilger, G., Shan, J., Wiedenmann, B., Hescheler, J., and Wobus, A.M. Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech Dev 1995;53:275–87.

    Article  PubMed  CAS  Google Scholar 

  49. Bagutti, C., Wobus, A.M., Fassler, R., and Watt, F.M. Differentiation of embryonal stem cells into keratinocytes: comparison of wild-type and beta 1 integrin-deficient cells. Dev Biol 1996;179:184–96.

    Article  PubMed  CAS  Google Scholar 

  50. Chinzei, R., Tanaka, Y., Shimizu-Saito, K. et al. Embryoid-body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology 2002;36:22–9.

    Article  PubMed  Google Scholar 

  51. Hamazaki, T., Iiboshi, Y., Oka, M. et al. Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett 2001;497:15–9.

    Article  PubMed  CAS  Google Scholar 

  52. Jones, E.A., Tosh, D., Wilson, D.I., Lindsay, S., and Forrester, L.M. Hepatic differentiation of murine embryonic stem cells. Exp Cell Res 2002;272:15–22.

    Article  PubMed  CAS  Google Scholar 

  53. Kania, G., Blyszczuk, P., Jochheim, A., Ott, M., and Wobus, A.M. Generation of glycogen- and albumin-producing hepatocyte-like cells from embryonic stem cells. Biol Chem 2004;385:943–53.

    Article  PubMed  CAS  Google Scholar 

  54. Yamada, T., Yoshikawa, M., Kanda, S. et al. In vitro differentiation of embryonic stem cells into hepatocyte-like cells identified by cellular uptake of indocyanine green. Stem Cells 2002;20:146–54.

    Article  PubMed  Google Scholar 

  55. Blyszczuk, P., Czyz, J., Kania, G., Wagner, M., Roll, U., St Onge, L., and Wobus, A.M. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci USA 2003;100:998–1003.

    Google Scholar 

  56. Hori, Y., Rulifson, I.C., Tsai, B.C., Heit, J.J., Cahoy, J.D., and Kim, S.K. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci USA 2002;99:16105–10.

    Google Scholar 

  57. Vaca, P., Martin, F., Vegara-Meseguer, J.M., Rovira, J.M., Berna, G., and Soria, B. Induction of differentiation of embryonic stem cells into insulin-secreting cells by fetal soluble factors. Stem Cells 2006;24:258–65.

    Article  PubMed  CAS  Google Scholar 

  58. Leahy, A., Xiong, J.W., Kuhnert, F., and Stuhlmann, H. Use of developmental marker genes to define temporal and spatial patterns of differentiation during embryoid body formation. J Exp Zool 1999;284:67–81.

    Article  PubMed  CAS  Google Scholar 

  59. Rohwedel, J., Guan, K., Hegert, C., and Wobus, A.M. Embryonic stem cells as an in vitro model for mutagenicity, cytotoxicity and embryotoxicity studies: present state and future prospects. Toxicol In Vitro 2001;15:741–53.

    Article  PubMed  CAS  Google Scholar 

  60. Maltsev, V.A., Wobus, A.M., Rohwedel, J., Bader, M., and Hescheler, J. Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ Res 1994;75:233–44.

    PubMed  CAS  Google Scholar 

  61. Rohwedel, J., Kleppisch, T., Pich, U. et al. Formation of postsynaptic-like membranes during differentiation of embryonic stem cells in vitro. Exp Cell Res 1998;239:214–25.

    Article  PubMed  CAS  Google Scholar 

  62. Rohwedel, J., Horak, V., Hebrok, M., Fuchtbauer, E.M., and Wobus, A.M. M-twist expression inhibits mouse embryonic stem cell-derived myogenic differentiation in vitro. Exp Cell Res 1995;220:92–100.

    Article  PubMed  CAS  Google Scholar 

  63. Prelle, K., Wobus, A.M., Krebs, O., Blum, W.F., and Wolf, E. Overexpression of insulin-like growth factor-II in mouse embryonic stem cells promotes myogenic differentiation. Biochem Biophys Res Commun 2000;277:631–8.

    Article  PubMed  CAS  Google Scholar 

  64. Johansson, B.M. and Wiles, M.V. Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Mol Cell Biol 1995;15:141–51.

    PubMed  CAS  Google Scholar 

  65. Ng, E.S., Azzola, L., Sourris, K., Robb, L., Stanley, E.G., and Elefanty, A.G. The primitive streak gene Mixl1 is required for efficient haematopoiesis and BMP4-induced ventral mesoderm patterning in differentiating ES cells. Development 2005;132:873–84.

    Article  PubMed  CAS  Google Scholar 

  66. Bouhon, I.A., Kato, H., Chandran, S., and Allen, N.D. Neural differentiation of mouse embryonic stem cells in chemically defined medium. Brain Res Bull 2005;68:62–75.

    Article  PubMed  CAS  Google Scholar 

  67. Rolletschek, A., Chang, H., Guan, K., Czyz, J., Meyer, M., and Wobus, A.M. Differentiation of embryonic stem cell-derived dopaminergic neurons is enhanced by survival-promoting factors. Mech Dev 2001;105:93–104.

    Article  PubMed  CAS  Google Scholar 

  68. Blyszczuk, P., Asbrand, C., Rozzo, A. et al. Embryonic stem cells differentiate into insulin-producing cells without selection of nestin-expressing cells. Int J Dev Biol 2004;48:1095–104.

    Article  PubMed  CAS  Google Scholar 

  69. Rohwedel, J., Guan, K., and Wobus, A.M. Induction of cellular differentiation by retinoic acid in vitro. Cells Tissues Organs 1999;165:190–202.

    Article  PubMed  CAS  Google Scholar 

  70. Li, M., Pevny, L., Lovell-Badge, R., and Smith, A. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr Biol 1998;8:971–4.

    Article  PubMed  CAS  Google Scholar 

  71. Chomczynski, P. and Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987;162:156–9.

    Article  PubMed  CAS  Google Scholar 

  72. Smith, D.B. and Johnson, K.S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 1988;6:31–40.

    Article  Google Scholar 

  73. Gearing, D.P., Nicola, N.A., Metcalf, D., Foote, S., Willson, T.A., Gough, N.M., and Williams, R.L. Production of leukemia inhibitory factor in Escherichia coli by a novel procedure and its use in maintaining embryonic stem cells in culture. BioTechnology 1989;7:1157–61.

    CAS  Google Scholar 

  74. Robertson E.J. (1987) Embryo-derived stem cell lines, in Robertson, E.J. (ed.) Teratocarcinoma and Embryonic Stem Cells – A Practical Approach. IRL Press, Oxford, pp. 71–112.

    Google Scholar 

  75. Myers, T.W. and Gelfand, D.H. Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry 1991;30:7661–6.

    Article  PubMed  CAS  Google Scholar 

  76. Rajagopal, J., Anderson, W.J., Kume, S., Martinez, O.I., and Melton, D.A. Insulin staining of ES cell progeny from insulin uptake. Science 2003;299:363.

    PubMed  Google Scholar 

  77. Blyszczuk, P., Kania, G., and Wobus, A.M. (2006) In vitro differentiation of mouse ES cells into pancreatic and hepatic cells, in Notarianni, E. and Evans, M.J. (eds.) Embryonic Stem Cells. Oxford University Press, Oxford, pp. 218–37.

    Google Scholar 

  78. Furst, D.O., Osborn, M., Nave, R., and Weber, K. The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 1988;106:1563–72.

    Article  PubMed  CAS  Google Scholar 

  79. Obermann, W.M., Gautel, M., Steiner, F., van der Ven, P.F., Weber, K., and Furst, D.O. The structure of the sarcomeric M band: localization of defined domains of myomesin, M-protein, and the 250-kD carboxy-terminal region of titin by immunoelectron microscopy. J Cell Biol 1996;134:1441–53.

    Article  PubMed  CAS  Google Scholar 

  80. Rudnicki, M.A., Jackowski, G., Saggin, L., and McBurney, M.W. Actin and myosin expression during development of cardiac muscle from cultured embryonal carcinoma cells. Dev Biol 1990;138:348–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Sabine Sommerfeld, Oda Weiss, and Karla Meier for technical assistance and Drs. Przemyslav Blyszczuk and Gabriela Kania for their expert help in the establishment of pancreatic and hepatic differentiation conditions. We are grateful to Dr. Dieter Fuerst, University of Bonn, Germany, for kindly providing antibodies. We thank the German Research Foundation (DFG) and the Ministry of Education and Research (BMBF) for funding our stem cell projects.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schroeder, I.S., Wiese, C., Truong, T.T., Rolletschek, A., Wobus, A.M. (2009). Differentiation Analysis of Pluripotent Mouse Embryonic Stem (ES) Cells In Vitro. In: Wurst, W., Kühn, R. (eds) Gene Knockout Protocols. Methods in Molecular Biology, vol 530. Humana Press. https://doi.org/10.1007/978-1-59745-471-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-471-1_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-26-8

  • Online ISBN: 978-1-59745-471-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics