Skip to main content

Cell-Free Assays

The Reductionist Approach to the Study of NADPH Oxidase Assembly, or “All You Wanted to Know About Cell-Free Assays but Did Not Dare to Ask”

  • Protocol
Book cover Neutrophil Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 412))

Abstract

The superoxide (O2 •−)-generating enzyme complex of phagocytes, known as the NADPH oxidase, can be assayed in a number of in vitro cell-free (or broken cell) systems. These consist of a mixture of the individual components of the NADPH oxidase, derived from resting phagocytes or in the form of purified recombinant proteins, exposed to an activating agent (or situation), in the presence of NADPH and oxygen. O2 •− produced by the mixture is measured by being trapped immediately after its generation with an appropriate acceptor in a kinetic assay, which permits the calculation of the linear rate of O2 •− production over time. Cell-free assays are distinguished from whole-cell assays or assays performed on membranes derived from stimulated cells by the fact that all components in the reaction are derived from resting, nonstimulated cells and, thus, the steps of NADPH oxidase activation (precatalytic [assembly] and catalytic) occur in vitro. Cell-free assays played a paramount role in the identification of the components of the NADPH oxidase complex, the diagnosis of various forms of chronic granulomatous disease (CGD), and, more recently, the analysis of the domains present on the components of the NADPH oxidase participating in protein-protein interactions leading to the assembly of the active complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klebanoff, S. J. (1999) Oxygen metabolites from phagocytes, in Inflammation: Basic Principles and Clinical Correlates (Gallin, J. I. and Snyderman, R., eds.), Lippincott, Williams & Wilkins, Philadelphia, pp. 721–768.

    Google Scholar 

  2. Cross, A. R. and Segal, A. W. (2004) The NADPH oxidase of phagocytes-prototype of the NOX electron transport chain systems. Biochim. Biophys. Acta 1657, 1–22.

    PubMed  CAS  Google Scholar 

  3. Quinn, M. T. and Gauss, K. A. (2004) Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J. Leukoc. Biol. 76, 760–781.

    Article  PubMed  CAS  Google Scholar 

  4. Han, C.-H., Freeman, J. L. R., Lee, T., Motalebi, S., and Lambeth, J. D. (1998) Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain. J. Biol. Chem. 273, 16,663–16,668.

    Article  PubMed  CAS  Google Scholar 

  5. Bokoch, G. M. and Diebold, B. A. (2002) Current models for NADPH oxidase regulation by Rac GTPase. Blood 100, 2692–2696.

    Article  PubMed  CAS  Google Scholar 

  6. Kreck, M. L., Freeman, J. L., and Lambeth, J. D. (1996) Membrane association of Rac is required for high activity of the respiratory burst oxidase. Biochemistry 35, 15,683–15,692.

    Article  PubMed  CAS  Google Scholar 

  7. Gorzalczany, Y., Sigal, N., Itan, M., Lotan, O., and Pick, E. (2000) Targeting of Rac1 to the phagocyte membrane is sufficient for the induction of NADPH oxidase assembly. J. Biol. Chem. 275, 40,073–40,081.

    Article  PubMed  CAS  Google Scholar 

  8. Lambeth, J. D. (2004) NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181–189.

    Article  PubMed  CAS  Google Scholar 

  9. Freeman, J. L. and Lambeth, J. D. (1996) NADPH oxidase activity is independent of p47phox in vitro. J. Biol. Chem. 271, 22,578–22,582.

    Article  PubMed  CAS  Google Scholar 

  10. Koshkin, V., Lotan, O., and Pick, E. (1996) The cytosolic component p47phox is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production. J. Biol. Chem. 271, 30,326–30,329.

    Article  PubMed  CAS  Google Scholar 

  11. Cheson, B. D., Curnutte, J. T., and Babior, B. M. (1977) The oxidative killing mechanism of the neutrophil. Prog. Clin. Immunol. 3, 1–65.

    PubMed  CAS  Google Scholar 

  12. Pick, E. and Keisari, Y. (1981) Superoxide anion production and hydrogen peroxide production by chemically elicited macrophages—induction by multiple nonphagocytic stimuli. Cell. Immunol. 59, 301–318.

    Article  PubMed  CAS  Google Scholar 

  13. Babior, B. M., Curnutte, J. T., and McMurrich, B. J. (1976) The particulate superoxide-forming system from human neutrophils: properties of the system and further evidence supporting its participation in the respiratory burst. J. Clin. Invest. 58, 989–996.

    Article  PubMed  CAS  Google Scholar 

  14. Markert, M., Andrews, P. C., and Babior, B. M. (1984) Measurement of O2 •− production by human neutrophils. The preparation and assay of NADPH oxidase-containing particles from human neutrophils. Methods Enzymol. 105, 358–365.

    Article  PubMed  CAS  Google Scholar 

  15. Flores, J., Witkum, P., and Sharp, G. W. G. (1976) Activation of adenylate cyclase by cholera toxin. J. Clin. Invest. 57, 450–458.

    Article  PubMed  CAS  Google Scholar 

  16. Bromberg, Y. and Pick, E. (1984) Unsaturated fatty acids stimulate NADPH-dependent superoxide generation by cell-free system in macrophages. Cell. Immunol. 88, 213–221.

    Article  PubMed  CAS  Google Scholar 

  17. Heynemann, R. A. and Vercauteren, R. E. (1984) Activation of a NADPH oxidase from horse poymorphonuclear leukocytes in a cell-free system. J. Leukoc. Biol. 36, 751–759.

    Google Scholar 

  18. McPhail, L. C., Shirley, P. S., Clayton, C. C., and Snyderman, R. (1985) Activation of the respiratory burst enzyme from human neutrophils in a cell-free system. J. Clin. Invest. 75, 1735–1739.

    Article  PubMed  CAS  Google Scholar 

  19. Curnutte, J. T. (1985) Activation of human neutrophil nicotinamide adenine dinucleotide phosphate reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic acid in a cell-free system. J. Clin. Invest. 75, 1740–1743.

    Article  PubMed  CAS  Google Scholar 

  20. Curnutte, J. T. and Babior, B. M. (1987) Chronic granulomatous disease. Adv. in Human Genetics 16, 229–297.

    CAS  Google Scholar 

  21. Bromberg, Y. and Pick, E. (1985) Activation of NADPH-dependent superoxide production in a cell-free system by sodium dodecyl sulfate. J. Biol. Chem. 260, 13,539–13,545.

    PubMed  CAS  Google Scholar 

  22. Groemping, Y., Lapouge, K., Smerdon, S. J., and Rittinger, K. (2003) Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113, 343–355.

    Article  PubMed  CAS  Google Scholar 

  23. Swain, S. D., Helgerson, S. L., Davis, A. R., Nelson, L. K., and Quinn, M. T. (1997) Analysis of activation-induced conformational changes in p47phox using tryptophan fluorescence spectroscopy. J. Biol. Chem. 272, 29,502–29,510.

    Article  PubMed  CAS  Google Scholar 

  24. Foubert, T. R., Burritt, J. B., Taylor, R. M., and Jesaitis, A. J. (2002) Structural changes are induced in human neutrophil cytochrome b by NADPH oxidase activators, LDS, SDS and arachidonate: Intermolecular resonance energy transfer between trisulfopyrenyl-wheat germ agglutinin and cytochrome b 558. Biochim. Biophys. Acta 1567, 221–231.

    Article  PubMed  CAS  Google Scholar 

  25. Qualliotine-Mann, D., Agwu, D. E., Ellenburg, M. D., McCall, C. E., and McPhail, L. C. (1993) Phosphatidic acid and diacylglycerol synergize in a cell-free system for activation of NADPH oxidase from human neutrophils. J. Biol. Chem. 268, 23,843–23,849.

    PubMed  CAS  Google Scholar 

  26. Park, J.-W., Hoyal, C. R., El Benna, J., and Babior, B. M. (1997) Kinase-dependent activation of the leukocyte NADPH oxidase in a cell-free system—Phosphorylation of membranes and p47phox during oxidase activation. J. Biol. Chem. 272, 11,035–11,043.

    Article  PubMed  CAS  Google Scholar 

  27. Abo, A., Boyhan, A., West, I., Thrasher, A. J., and Segal, A. W. (1992) Reconstitution of neutrophil NADPH oxidase activity in the cell-free system by four components: p67phox, p47phox, p21rac1, and cytochrome b−245. J. Biol. Chem. 267, 16,767–16,770.

    PubMed  CAS  Google Scholar 

  28. Ebisu, K., Nagasawa, T., Watanabe, K., Kakinuma, K., Miyano, K., and Tamura, M. (2001) Fused p47phox and p67phox truncations efficiently reconstitute NADPH oxidase with higher activity than the individual components. J. Biol. Chem. 276, 24,498–24,505.

    Article  PubMed  CAS  Google Scholar 

  29. Alloul, N., Gorzalczany, Y., Itan, M., Sigal, N., and Pick, E. (2001). Activation of the superoxide-generating NADPH oxidase by chimeric proteins consisting of segments of the cytosolic component p67phox and the small GTPase Rac1. Biochemistry 40, 14,557–14,566.

    Article  PubMed  CAS  Google Scholar 

  30. Hata, K., Ito, T., Takeshige, K., and Sumimoto, H. (1998) Anionic amphiphile-independent activation of the phagocyte NADPH oxidase in a cell-free system by p47phox and p67phox, both in C terminally truncated forms. Implications for regulatory Src himology 3 domain-mediated interactions. J. Biol. Chem. 273, 4232–4236.

    Article  PubMed  CAS  Google Scholar 

  31. Peng, G., Huang, J., Boyd, M., and Kleinberg, M. E. (2003) Properties of phagocyte NADPH oxidase p47phox mutants with unmasked SH3 (Src homology 3) domains: Full reconstitution of oxidase activity in a semi-recombinant cell-free system lacking arachidonic acid. Biochem. J. 373, 221–229.

    Article  PubMed  CAS  Google Scholar 

  32. Gorzalczany, Y., Alloul, N., Sigal, N., Weinbaum, C., and Pick, E. (2002) A prenylated p67phox-Rac1 chimera elicits NADPH-dependent superoxide production by phagocyte membranes in the absence of an activator and of p47phox. Conversion of a pagan NADPH oxidase to monotheism. J. Biol. Chem. 277, 18,605–18,610.

    Article  PubMed  CAS  Google Scholar 

  33. Mizrahi, A., Molshanski-Mor, S., Weinbaum, C., Zheng, Y., Hirshberg, M., and Pick, E. (2005) Activation of the phagocyte NADPH oxidase by Rac guanine nucleotide exchange factors in conjunction with ATP and nucleoside diphosphate kinase. J. Biol. Chem. 280, 3802–3811.

    Article  PubMed  CAS  Google Scholar 

  34. Babior, B. M., Kipnes, R. S., and Curnutte, J. T. (1973) Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J. Clin. Invest. 52, 741–744.

    Article  PubMed  CAS  Google Scholar 

  35. Pick, E., Bromberg, Y., Shpungin, S., and Gadba, R. (1987) Activation of the superoxide forming NADPH oxidase in a cell-free system by sodium dodecyl sulfate. Characterization of the membrane-associated component. J. Biol. Chem. 262, 16,476–16,483.

    PubMed  CAS  Google Scholar 

  36. Shpungin, S., Dotan, I., Abo, A., and Pick, E. (1989) Activation of the superoxide forming NADPH oxidase in a cell-free system by sodium dodecyl sulfate. Absolute lipid dependence of the solubilized enzyme. J. Biol. Chem. 264, 9195–9203.

    PubMed  CAS  Google Scholar 

  37. Light, D., Walsh, C., O’Callaghan, A. M., Goetzl, E. J., and Tauber, A. I. (1981) Characteristics of the cofactor requirements for the superoxide-generating NADPH oxidase of human polymorphonuclear leukocytes. Biochemistry 20, 1468–1476.

    Article  PubMed  CAS  Google Scholar 

  38. Leto, T. L., Garrett, M. C., Fujii, H., and Nunoi, H. (1991) Characterization of neutrophil NADPH oxidase factors p47phox and p67phox from recombinant baculoviruses. J. Biol. Chem. 266, 19,812–19,818.

    PubMed  CAS  Google Scholar 

  39. Koshkin, V., Lotan, O., and Pick, E. (1997) Electron transfer in the superoxide-generating NADPH oxidase complex reconstituted in vitro. Biochim. Biophys. Acta 1319, 139–146.

    Article  PubMed  CAS  Google Scholar 

  40. Wientjes, F. B., Panayotou, G., Reeves, E., and Segal, A. W. (1996) Interactions between cytosolic components of the NADPH oxidase: p40phox interacts with both p67phox and p47phox. Biochem. J. 317, 919–924.

    PubMed  CAS  Google Scholar 

  41. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  42. Kreck, M. L., Uhlinger, D. J., Tyagi, S. R., Inge, K. L., and Lambeth, J. D. (1994) Participation of the small molecular weight GTP-binding protein Rac1 in cell-free activation and assembly of the respiratory burst oxidase. Inhibition by a carboxyl-terminal Rac peptide. J. Biol. Chem. 269, 4161–4168.

    PubMed  CAS  Google Scholar 

  43. Kwong, C. H., Malech, H. L., Rotrosen, D., and Leto, T. L. (1993) Regulation of the human neutrophil NADPH oxidase by rho-related G-proteins. Biochemistry 32, 5711–5717.

    Article  PubMed  CAS  Google Scholar 

  44. Sigal, N., Gorzalczany, Y., Sarfstein, R., Weinbaum, C., Zheng, Y., and Pick, E. (2003) The guanine nucleotide exchange factor Trio activates the phagocyte NADPH oxidase in the absence of GDP to GTP exchange on Rac. “The emperor’s new clothes”. J. Biol. Chem. 278, 4854–4861.

    Article  PubMed  CAS  Google Scholar 

  45. Bordier, C. (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J. Biol. Chem. 256, 1604–1607.

    PubMed  CAS  Google Scholar 

  46. Gutierrez, L., Magee, A. I., Marshall, C. J., and Hancock, J. F. (1989) Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxy-terminal proteolysis. EMBO J. 8, 1093–1098.

    PubMed  CAS  Google Scholar 

  47. Babior, B. M., Kuver, R., and Curnutte, J. T. (1988) Kinetics of activation of the respiratory burst oxidase in a fully soluble system from human neutrophils. J. Biol. Chem. 23, 1713–1718.

    Google Scholar 

  48. Pilloud, M.-C., Doussiere, J., and Vignais, P. V. (1989) Parameters of activation of the membrane-bound O2 -generating oxidase from neutrophils in a cell-free system. Biochem. Biophys. Res. Comm. 159, 783–790.

    Article  PubMed  CAS  Google Scholar 

  49. Cross, A. R., Erickson, R. W., and Curnutte, J. T. (1999) Simultaneous presence pf p47phox and flavocytochrome b −245 are required for activation of NADPH oxidase by anionic amphiphiles. Evidence for an intermediate state of oxidase activation. J. Biol. Chem. 274, 15,519–15,525.

    Article  PubMed  CAS  Google Scholar 

  50. Sarfstein, R., Gorzalczany, Y., Mizrahi, A., et al. (2004) Dual role of Rac in the assembly of NADPH oxidase, tethering to the membrane and activation of p67phox. A study based on mutagenesis of p67phox-Rac1 chimeras. J. Biol. Chem. 279, 16,007–16,016.

    Article  PubMed  CAS  Google Scholar 

  51. Mizrahi, A., Berdichevsky, Y., Ugolev, Y., et al. (2006) Assembly of the phagocyte NADPH oxidase complex: chimeric constructs derived from the cytosolic components as tools for exploring structure-function relationships. J. Leukoc. Biol. 79, 881–895.

    Article  PubMed  CAS  Google Scholar 

  52. Ugolev, Y., Molshanski-Mor, S., Weinbaum, C., and Pick, E. (2006) Liposomes comprising anionic but not neutral phospholipids cause dissociation of [Rac(1 or 2)-RhoGDI] complexes and support amphiphile-independent NADPH oxidase activation by such complexes. J. Biol. Chem. 281, 19,204–19,279.

    Article  PubMed  CAS  Google Scholar 

  53. Sigal, N., Gorzalczany, Y., and Pick, E. (2003) Two pathways of activation of he superoxide-generating NADPH oxidase of phagocytes in vitro—Distinctive effects of inhibitors. Inflammation 27, 147–159.

    Article  PubMed  CAS  Google Scholar 

  54. Rotrosen, D., Kleinberg, M. E., Nunoi, H., Leto, T., Gallin, J. I., and Malech, H. L. (1990) Evidence for a functional cytoplasmic domain of phagocyte oxidase cytochrome b 558. J. Biol. Chem. 265, 8745–8750.

    PubMed  CAS  Google Scholar 

  55. Nauseef, W. M., McCormick, S., Jan, R., Leidal, K. G., and Clark, R. A. (1993) Functional domains in an arginine-rich carboxyl-terminal region of p47phox. J. Biol. Chem. 268, 23,646–23,651.

    PubMed  CAS  Google Scholar 

  56. Babior, B. M. and Kipnes, R. S. (1977) Superoxide-forming enzyme from human neutrophils: evidence for a flavin requirement. Blood 50, 517–524.

    PubMed  CAS  Google Scholar 

  57. Knaus, U. G., Heyworth, P. G., Kinsella, B. T., Curnutte, J. T., and Bokoch, G. M. (1992) Purification and characterization of Rac2. A cytosolic GTP-binding protein that regulates human neutrophil NADPH oxidase. J. Biol. Chem. 267, 23,575–23,582.

    PubMed  CAS  Google Scholar 

  58. Ligeti, E., Doussiere, J., and Vignais, P. V. (1988) Activation of the O2 •−-generating oxidase in plasma membrane from bovine polymorphonuclear neutrophils by arachidonic acid, a cytosolic factor of protein nature, and nonhydrolyzable analogues of GTP. Biochemistry 27, 193–200.

    Article  PubMed  CAS  Google Scholar 

  59. Seifert, R., Rosenthal, W., and Schultz, G. (1986) Guanine nucldeotides stimulate NADPH oxidase in membranes of human neutrophils. FEBS Lett. 105, 161–165.

    Article  Google Scholar 

  60. Gabig, T. G., English, D., Akard, L. P., and Schell, M. J. (1987) Regulation of neutrophil NADPH oxidase activation in a cell-free system by guanine nucleotides and fluoride. Evidence for participation of a pertussis and cholera toxininsensitive G protein. J. Biol. Chem. 262, 1685–1690.

    PubMed  CAS  Google Scholar 

  61. Aharoni, I. and Pick, E. (1990) Activation of the superoxide-generating NADPH oxidase of macrophages by sodium dodecyl sulfate in a soluble cell-free system. Evidence for involvement of a G protein. J. Leukoc. Biol. 48, 107–115.

    PubMed  CAS  Google Scholar 

  62. Toporik, A., Gorzalczany, Y., Hirshberg, M., Pick, E., and Lotan, O. (1998) Mutational analysis of novel effector domains in Rac1 involved in the activation of nicotinamide adenine dinucleotide phosphate (reduced) oxidase. Biochemistry 37, 7147–7156.

    Article  PubMed  CAS  Google Scholar 

  63. Fuchs, A., Dagher, M.-C., Jouan, A., and Vignais, P. V. (1994) Activation of the O2 -generating NADPH oxidase in a semi-recombinant cell-free system. Assessment of the function of Rac in the activation process. Eur. J. Biochem. 226, 587–595.

    Article  PubMed  CAS  Google Scholar 

  64. Heyworth, P. G., Knaus, U. G., Xu, X., et al. (1993) Requirement for posttranslational processing of Rac GTP-binding proteins for activation of human neutrophil NADPH oxidase. Mol. Biol. Cell 4, 261–269.

    PubMed  CAS  Google Scholar 

  65. Zhao, X., Carnevale, K. A., and Cathcart, M. K. (2003) Human monocytes use Rac1, not Rac2, in the NADPH oxidase complex. J. Biol. Chem. 278, 40,788–40,792.

    Article  PubMed  CAS  Google Scholar 

  66. Bromberg, Y. and Pick, E. (1983) Unsaturated fatty acids as second messengers of superoxide generation by macrophages. Cell. Immunol. 79, 243–252.

    Article  Google Scholar 

  67. Seifert, R. and Schultz, G. (1987) Fatty acid-induced activation of NADPH oxidase in plasma membranes of human neutrophils depends on neutrophil cytosol and is potentiated by stable guanine nucleotides. Eur. J. Biochem. 162, 563–569.

    Article  PubMed  CAS  Google Scholar 

  68. Tanaka, T., Makino, R., Iizuka, T., Ishimura, Y., and Kanegasaki, S. (1988) Activation by saturated and monounsaturated fatty acids of the O2 -generating system in a cell-free preparation from neutrophils. J. Biol. Chem. 263, 13,670–13,676.

    PubMed  CAS  Google Scholar 

  69. Diatchuk, V., Lotan, O., Koshkin, V., Wikstroem, P., and Pick, E. (1997) Inhibition of NADPH oxidase activation by 4-(2-aminoethyl)-benzenesulfonyl fluoride and related compounds. J. Biol. Chem. 272, 13,292–13,301.

    Article  PubMed  CAS  Google Scholar 

  70. Pick, E. and Gadba, R. (1988) Certain lymphoid cells contain the membrane-associated component of the phagocyte-specific NADPH oxidase. J. Immunol. 140, 1611–1617.

    PubMed  CAS  Google Scholar 

  71. Yamaguchi, T., Kaneda, M., and Kakinuma, K. (1986) Effect of saturated and unsaturated fatty acids on the oxidative metabolism of human neutrophils. The role of calcium ion in the extracellular medium. Biochim. Biophys. Acta 861, 440–446.

    Article  PubMed  CAS  Google Scholar 

  72. Hashida, S., Yuzawa, S., Suzuki, N. N., et al. (2004) Binding of FAD to cytochrome b 558 is facilitated during activation of the phagocyte NADPH oxidase, leading to superoxide production. J. Biol. Chem. 279, 26,378–26,386.

    Article  PubMed  CAS  Google Scholar 

  73. Quinn, M. T., Evans, T., Loetterle, L. R., Jesaitis, A. J., and Bokoch, G. M. (1993) Translocation of Rac correlates with NADPH oxidase activation. Evidence for equimolar translocation of oxidase components. J. Biol. Chem. 268, 20,983–20,987.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Molshanski-Mor, S., Mizrahi, A., Ugolev, Y., Dahan, I., Berdichevsky, Y., Pick, E. (2007). Cell-Free Assays. In: Quinn, M.T., DeLeo, F.R., Bokoch, G.M. (eds) Neutrophil Methods and Protocols. Methods in Molecular Biology™, vol 412. Humana Press. https://doi.org/10.1007/978-1-59745-467-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-467-4_25

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-788-4

  • Online ISBN: 978-1-59745-467-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics