Skip to main content

Computational Prediction of Subcellular Localization

  • Protocol
Book cover Protein Targeting Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 390))

{It is widely recognized that much of the information for determining the final subcellular localization of proteins is found in their amino acid sequences. Thus the prediction of protein localization sites is of both theoretical and practical interest. In most cases, the prediction has been attempted in two ways: one is based on the knowledge of experimentally characterized targeting signals, while the other utilizes the statistical differences of general sequence characteristics, such as amino acid composition, between localization sites. Both approaches have limitations, and it is recommended to check the results of various prediction methods based on different principles as well as training data. Recently, increased proteomic analyses of localization sites have provided new data to assess the current status of predictive methods. In this chapter we discuss these issues and close with an example illustrating the use of the WoLF PSORT web server for localization prediction.}

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petrey, D. and Honig, B. (2005) Protein structure prediction: inroads to biology.Mol.Cell 20, 811–819.

    Article  CAS  PubMed  Google Scholar 

  2. Chandonia, J. M. and Brenner, S. E. (2006) The impact of structural genomics: expectations and outcomes.Science 311, 347–351.

    Article  CAS  PubMed  Google Scholar 

  3. Nakao, M., Barrero, R. A., Mukai, Y., Motono, C., Suwa, M., and Nakai, K. (2005) Large-scale analysis of human alternative protein isoforms: pattern classification and correlation with subcellular localization signals.Nucleic Acids Res. 33, 2355–2363.

    Article  CAS  PubMed  Google Scholar 

  4. Heazlewood, J. L., Tonti-Filippini, J. S., Gout, A. M., Day, D. A., Whelan, J., and Millar, A. H. (2004) Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins.Plant Cell 16, 241–256.

    Article  CAS  PubMed  Google Scholar 

  5. Wu, L. F., Chanal, A., and Rodrigue, A. (2000) Membrane targeting and translocation of bacterial hydrogenases.Arch. Microbiol. 173, 319–324.

    Article  CAS  PubMed  Google Scholar 

  6. Margeot, A., Blugeon, C., Sylvestre, J., Vialette, S., Jacq, C., and Corral-Debrinski, M. (2002) In Saccharomyces cerevisiae, ATP2 mRNA sorting to the vicinity of mitochondria is essential for respiratory function.EMBO J. 21, 6893–6904.

    Article  CAS  PubMed  Google Scholar 

  7. Muslin, A. J. and Xing, H. (2000) 14-3-3 proteins: regulation of subcellular localization by molecular interference.Cell Signal 12, 703–709.

    Article  CAS  PubMed  Google Scholar 

  8. Nakai, K. (2000) Protein sorting signals and prediction of subcellular localization.Adv. Protein Chem. 54, 277–344.

    Article  CAS  PubMed  Google Scholar 

  9. Nakai, K. (2001) Review: prediction of in vivo fates of proteins in the era of genomics and proteomics.J. Struct. Biol. 134,103–116.

    Article  CAS  PubMed  Google Scholar 

  10. Emanuelsson, O. and von Heijne, G. (2001) Prediction of organellar targeting signals.Biochim. Biophys. Acta 1541, 114–119.

    Article  CAS  PubMed  Google Scholar 

  11. Emanuelsson, O. (2002) Predicting protein subcellular localisation from amino acid sequence information.Brief Bioinform. 3, 361–376.

    Article  CAS  PubMed  Google Scholar 

  12. Donnes, P. and Hoglund, A. (2004) Predicting protein subcellular localization: past, present, and future.Genom. Proteom. Bioinform. 2, 209–215.

    Google Scholar 

  13. Horton, P., Mukai, Y., and Nakai, K. (2004) Protein subcellular localization prediction, inPractical Bioinformatician(Wong, L., ed.), World Scientific Publishing Co., pp. 193–216.

    Google Scholar 

  14. Schneider, G. and Fechner, U. (2004) Advances in the prediction of protein targeting signals.Proteomics 4, 1571–1580.

    Article  CAS  PubMed  Google Scholar 

  15. Nakai, K. (2002) Signal peptides, inCell-Penetrating Peptides: Processes and Applications(Langel, U., ed.), CRC Press, Boca Raton, FL, pp. 295–324.

    Google Scholar 

  16. Halic, M. and Beckmann, R. (2005) The signal recognition particle and its interactions during protein targeting.Curr. Opin. Struct. Biol. 15, 116–125.

    Article  CAS  PubMed  Google Scholar 

  17. von Heijne, G. (1983) Patterns of amino acids near signal-sequence cleavage sites.Eur. J. Biochem. 133, 17–21.

    Article  Google Scholar 

  18. Chou, K. C. (2002) Prediction of protein signal sequences.Curr. Protein Pept. Sci. 3, 615–622.

    Article  CAS  PubMed  Google Scholar 

  19. von Heijne, G. (1986) A new method for predicting signal sequence cleavage sites.Nucleic Acids Res. 14, 4683–4690.

    Article  Google Scholar 

  20. Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G. (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.Protein Eng. 10, 1–6.

    Article  CAS  PubMed  Google Scholar 

  21. Bendtsen, J. D., Nielsen, H., von Heijne, G., and Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0.J. Mol. Biol. 340, 783–795.

    Article  PubMed  CAS  Google Scholar 

  22. Hiller, K., Grote, A., Scheer, M., Munch, R., and Jahn, D. (2004) PrediSi: prediction of signal peptides and their cleavage positions.Nucleic Acids Res. 32, W375–379.

    Article  CAS  PubMed  Google Scholar 

  23. von Heijne, G. (1998) Life and death of a signal peptide.Nature 396, 111, 113.

    Google Scholar 

  24. Kall, L., Krogh, A., and Sonnhammer, E. L. (2004) A combined transmembrane topology and signal peptide prediction method.J. Mol. Biol. 338, 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  25. Yuan, Z., Davis, M. J., Zhang, F., and Teasdale, R.D. (2003) Computational differentiation of N-terminal signal peptides and transmembrane helices.Biochem. Biophys. Res.Commun. 312, 1278–1283.

    Article  CAS  PubMed  Google Scholar 

  26. Chen, Y., Yu, P., Luo, J., and Jiang, Y. (2003) Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT.Mamm. Genome 14, 859–865.

    Article  CAS  PubMed  Google Scholar 

  27. Grimmond, S. M., Miranda, K. C., Yuan, Z., Davis, M. J., et al. (2003) The mouse secretome: functional classification of the proteins secreted into the extracellular environment.Genome Res. 13, 1350–1359.

    Article  CAS  PubMed  Google Scholar 

  28. Bendtsen, J. D., Jensen, L. J., Blom, N., Von Heijne, G., and Brunak, S. (2004) Feature-based prediction of non-classical and leaderless protein secretion.Protein Eng. Des Sel. 17, 49–356.

    Article  CAS  Google Scholar 

  29. Bendtsen, J.D., Kiemer, L., Fausboll, A., and Brunak, S. (2005) Non-classical protein secretion in bacteria.BMC Microbiol. 5, 58.

    Article  PubMed  CAS  Google Scholar 

  30. Martoglio, B. and Dobberstein, B. (1998) Signal sequences: more than just greasy peptides.Trends Cell Biol. 8, 410–415.

    Article  CAS  PubMed  Google Scholar 

  31. von Heijne, G. (1989) The structure of signal peptides from bacterial lipoproteins.Protein Eng. 2, 531–534.

    Article  Google Scholar 

  32. Juncker, A. S., Willenbrock, H., Von Heijne, G., Brunak, S., Nielsen, H., and Krogh, A. (2003) Prediction of lipoprotein signal peptides in Gram-negative bacteria.Protein Sci. 12, 1652–1662.

    Article  CAS  PubMed  Google Scholar 

  33. Gonnet, P., Rudd, K. E., and Lisacek, F. (2004) Fine-tuning the prediction of sequences cleaved by signal peptidase II: a curated set of proven and predicted lipoproteins of Escherichia coli K-12.Proteomics 4, 1597–1613.

    Article  CAS  PubMed  Google Scholar 

  34. Setubal, J. C., Reis, M., Matsunaga, J., and Haake, D. A. (2006) Lipoprotein computational prediction in spirochaetal genomes.Microbiol.ogy 152, 113–121.

    CAS  Google Scholar 

  35. Berks, B. C., Palmer, T., and Sargent, F. (2005) Protein targeting by the bacterial twin-arginine translocation (Tat) pathway.Curr. Opin. Microbiol. 8, 174–181.

    Article  CAS  PubMed  Google Scholar 

  36. Bendtsen, J. D., Nielsen, H., Widdick, D., Palmer, T., and Brunak, S. (2005) Prediction of twin-arginine signal peptides.BMC Bioinform. 6, 167.

    Article  CAS  Google Scholar 

  37. de Gier, J. W., and Luirink, J. (2001) Biogenesis of inner membrane proteins in Escherichia coli.Mol. Microbiol. 40, 314–322.

    Article  PubMed  Google Scholar 

  38. Peabody, C. R., Chung, Y. J., Yen, M. R., Vidal-Ingigliardi, D., Pugsley, A. P., and Saier, M. H., Jr. (2003) Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella.Microbiology 149, 3051–3072.

    Article  CAS  PubMed  Google Scholar 

  39. Koehler, C. M. (2004) New developments in mitochondrial assembly.Annu. Rev. Cell Dev. Biol. 20, 309–335.

    Article  CAS  PubMed  Google Scholar 

  40. Taylor, R. D. and Pfanner, N. (2004) The protein import and assembly machinery of the mitochondrial outer membrane.Biochim. Biophys. Acta 1658, 37–43.

    Article  CAS  PubMed  Google Scholar 

  41. Rapaport, D. (2003) Finding the right organelle. Targeting signals in mitochondrial outer-membrane proteins.EMBO Rep. 4, 948–952.

    Article  CAS  PubMed  Google Scholar 

  42. Paschen, S. A., Neupert, W., and Rapaport, D. (2005) Biogenesis of beta-barrel membrane proteins of mitochondria.Trends Biochem. Sci. 30, 575–582.

    Article  CAS  PubMed  Google Scholar 

  43. Andreoli, C., Prokisch, H.,Hortnagel, K., et al. (2004) MitoP2, an integrated database on mitochondrial proteins in yeast and man.Nucleic Acids Res. 32, D459–462.

    Article  CAS  PubMed  Google Scholar 

  44. Prokisch, H.,Andreoli, C.,Ahting, U., et al. (2006) MitoP2: the mitochondrial proteome database–now including mouse data.Nucleic Acids Res. 34, D705–711.

    Article  CAS  PubMed  Google Scholar 

  45. Heazlewood, J. L. and Millar, A. H. (2005) AMPDB: the Arabidopsis Mitochondrial Protein Database.Nucleic Acids Res. 33, D605–610.

    Article  CAS  PubMed  Google Scholar 

  46. Mueller, J. C.,Andreoli, C.,Prokisch, H., and Meitinger, T. (2004) Mechanisms for multiple intracellular localization of human mitochondrial proteins.Mitochondrion 3, 315–325.

    Article  CAS  PubMed  Google Scholar 

  47. Nakai, K. and Kanehisa, M. (1992) A knowledge base for predicting protein localization sites in eukaryotic cells.Genomics 14, 897–911.

    Article  CAS  PubMed  Google Scholar 

  48. Emanuelsson, O.,Nielsen, H.,Brunak, S., and von Heijne, G. (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence.J. Mol. Biol. 300, 1005–1016.

    Article  CAS  PubMed  Google Scholar 

  49. Small, I.,Peeters, N.,Legeai, F., and Lurin, C. (2004) Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences.Proteomics 4, 1581–1590.

    Article  CAS  PubMed  Google Scholar 

  50. Guda, C.,Fahy, E., and Subramaniam, S. (2004) MITOPRED: a genome-scale method for prediction of nucleus-encoded mitochondrial proteins.Bioinformatics 20, 1785–1794.

    Article  CAS  PubMed  Google Scholar 

  51. Guda, C.,Guda, P.,Fahy, E., and Subramaniam, S. (2004) MITOPRED: a web server for the prediction of mitochondrial proteins.Nucleic Acids Res. 32, W372–374.

    Article  CAS  PubMed  Google Scholar 

  52. Kumar, M.,Verma, R., and Raghava, G.P. (2006) Prediction of mitochondrial proteins using support vector machine and hidden markov model.J. Biol. Chem. 281, 5357–5363.

    Article  CAS  PubMed  Google Scholar 

  53. Claros, M. G. and Vincens, P. (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences.Eur. J. Biochem. 241, 779–786.

    Article  CAS  PubMed  Google Scholar 

  54. Cameron, J. M.,Hurd, T., and Robinson, B. H. (2005) Computational identification of human mitochondrial proteins based on homology to yeast mitochondrially targeted proteins.Bioinformatics 21, 1825–1830.

    Article  CAS  PubMed  Google Scholar 

  55. Reumann, S.,Inoue, K., and Keegstra, K. (2005) Evolution of the general protein import pathway of plastids (review).Mol. Membr. Biol. 22, 73–86.

    Article  CAS  PubMed  Google Scholar 

  56. Emanuelsson, O.,Nielsen, H., and von Heijne, G. (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites.Protein Sci. 8, 978–984.

    Article  CAS  PubMed  Google Scholar 

  57. Schein, A. I .,Kissinger, J. C., and Ungar, L. H. (2001) Chloroplast transit peptide prediction: a peek inside the black box.Nucleic Acids Res. 29, E92.

    Article  Google Scholar 

  58. Bannai, H.,Tamada, Y., Maruyama, O., Nakai, K., and Miyano, S. (2002) Extensive feature detection of N-terminal protein sorting signals.Bioinformatics 18, 298–305.

    Article  CAS  PubMed  Google Scholar 

  59. Richly, E. and Leister, D. (2004) An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice.Gene 329, 11–16.

    Article  CAS  PubMed  Google Scholar 

  60. Westerlund, I., Von Heijne, G., and Emanuelsson, O. (2003) LumenP–a neural network predictor for protein localization in the thylakoid lumen.Protein Sci. 12, 2360–2366.

    Article  CAS  PubMed  Google Scholar 

  61. Christophe, D., Christophe-Hobertus, C., and Pichon, B. (2000) Nuclear targeting of proteins: how many different signals?Cell Signal 12, 337–341.

    Article  CAS  PubMed  Google Scholar 

  62. Pemberton, L. F. and Paschal, B. M. (2005) Mechanisms of receptor-mediated nuclear import and nuclear export.Traffic 6, 187–198.

    Article  CAS  PubMed  Google Scholar 

  63. Cokol, M., Nair, R., and Rost, B. (2000) Finding nuclear localization signals.EMBO Rep. 1, 411–415.

    Article  CAS  PubMed  Google Scholar 

  64. Nair, R., Carter, P., and Rost, B. (2003) NLSdb: database of nuclear localization signals.Nucleic Acids Res. 31, 397–399.

    Article  CAS  PubMed  Google Scholar 

  65. Heddad, A., Brameler, M., and MacCallum, R. M. (2004) Evolving regular expression-based sequence classifiers for protein nuclear localisation.Lecture Notes Computer Sci. 3005, 31–40.

    Article  Google Scholar 

  66. Kutay, U. and Guttinger, S. (2005) Leucine-rich nuclear-export signals: born to be weak.Trends Cell Biol. 15, 121–124.

    Article  CAS  PubMed  Google Scholar 

  67. la Cour, T., Gupta, R., Rapacki, K., Skriver, K., Poulsen, F. M., and Brunak, S. (2003) NESbase version 1.0: a database of nuclear export signals. Nucleic Acids Res.31, 393–396.

    Article  PubMed  CAS  Google Scholar 

  68. la Cour, T., Kiemer, L., Molgaard, A., Gupta, R., Skriver, K., and Brunak, S. (2004) Analysis and prediction of leucine-rich nuclear export signals.Protein Eng. Des. Sel. 17, 527–536.

    Article  PubMed  CAS  Google Scholar 

  69. Baker, A. and Sparkes, I.A. (2005) Peroxisome protein import: some answers, more questions.Curr. Opin. Plant Biol. 8, 640–647.

    Article  CAS  PubMed  Google Scholar 

  70. Neuberger, G., Maurer-Stroh, S., Eisenhaber, B., Hartig, A., and Eisenhaber, F. (2003) Motif refinement of the peroxisomal targeting signal 1 and evaluation of taxon-specific differences.J. Mol. Biol. 328, 567–579.

    Article  CAS  PubMed  Google Scholar 

  71. Neuberger, G., Maurer-Stroh, S., Eisenhaber, B., Hartig, A., and Eisenhaber, F. (2003) Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence.J. Mol. Biol. 328, 581–592.

    Article  CAS  PubMed  Google Scholar 

  72. Emanuelsson, O., Elofsson, A., von Heijne, G., and Cristobal, S. (2003) In silico prediction of the peroxisomal proteome in fungi, plants and animals.J. Mol. Biol. 330, 443–456.

    Article  CAS  PubMed  Google Scholar 

  73. Kurochkin, I. V., Nagashima, T., Konagaya, A., and Schonbach, C. (2005) Sequence-based discovery of the human and rodent peroxisomal proteome.Appl. Bioinform. 4, 93–104.

    Article  CAS  Google Scholar 

  74. Neuberger, G., Kunze, M., Eisenhaber, F., Berger, J., Hartig, A., and Brocard, C. (2004) Hidden localization motifs: naturally occurring peroxisomal targeting signals in non-peroxisomal proteins.Genome Biol. 5, R97.

    Article  PubMed  Google Scholar 

  75. Petriv, O. I., Tang, L., Titorenko, V. I., and Rachubinski, R. A. (2004) A new definition for the consensus sequence of the peroxisome targeting signal type 2.J. Mol. Biol. 341, 119–134.

    Article  CAS  PubMed  Google Scholar 

  76. Reumann, S. (2004) Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses.Plant Physiol. 135, 783–800.

    Article  CAS  PubMed  Google Scholar 

  77. Reumann, S., Ma, C., Lemke, S., and Babujee, L. (2004) AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes.Plant Physiol. 136, 2587–2608.

    Article  CAS  PubMed  Google Scholar 

  78. Ton-That, H., Marraffini, L. A., and Schneewind, O. (2004) Protein sorting to the cell wall envelope of Gram-positive bacteria.Biochim. Biophys. Acta 1694, 269–278.

    Article  CAS  PubMed  Google Scholar 

  79. Boekhorst, J., de Been, M. W., Kleerebezem, M., and Siezen, R .J. (2005) Genome-wide detection and analysis of cell wall-bound proteins with LPxTG-like sorting motifs.J. Bacteriol. 187, 4928–4934.

    Article  CAS  PubMed  Google Scholar 

  80. Terashima, H., Fukuchi, S., Nakai, K., et al. (2002) Sequence-based approach for identification of cell wall proteins in Saccharomyces cerevisiae.Curr. Genet. 40, 311–316.

    Article  CAS  PubMed  Google Scholar 

  81. Rodriguez-Boulan, E., and Musch, A. (2005) Protein sorting in the Golgi complex: shifting paradigms.Biochim. Biophys. Acta 1744, 455–464.

    Article  CAS  PubMed  Google Scholar 

  82. Yuan, Z. and Teasdale, R.D. (2002) Prediction of Golgi Type II membrane proteins based on their transmembrane domains.Bioinformatics 18, 1109–1115.

    Article  CAS  PubMed  Google Scholar 

  83. Eisenhaber, B., Eisenhaber, F., Maurer-Stroh, S., and Neuberger, G. (2004) Prediction of sequence signals for lipid post-translational modifications: insights from case studies.Proteomics 4, 1614–1625.

    Article  CAS  PubMed  Google Scholar 

  84. Maurer-Stroh, S., Eisenhaber, B., and Eisenhaber, F. (2002) N-terminal N-myristoylation of proteins: refinement of the sequence motif and its taxon-specific differences.J. Mol. Biol. 317, 523–540.

    Article  CAS  PubMed  Google Scholar 

  85. Eisenhaber, B., Maurer-Stroh, S., Novatchkova, M., Schneider, G., and Eisenhaber, F. (2003) Enzymes and auxiliary factors for GPI lipid anchor biosynthesis and post-translational transfer to proteins.Bioessays 25, 367–385.

    Article  CAS  PubMed  Google Scholar 

  86. Maurer-Stroh, S., Eisenhaber, B., and Eisenhaber, F. (2002) N-Terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence.J. Mol. Biol. 317, 541–557.

    Article  CAS  PubMed  Google Scholar 

  87. Eisenhaber, F., Eisenhaber, B., Kubina, W., et al. (2003) Prediction of lipid posttranslational modifications and localization signals from protein sequences: big-Pi, NMT and PTS1.Nucleic Acids Res. 31, 3631–3634.

    Article  CAS  PubMed  Google Scholar 

  88. Eisenhaber, B., Wildpaner, M., Schultz, C. J., Borner, G. H., Dupree, P., and Eisenhaber, F. (2003) Glycosylphosphatidylinositol lipid anchoring of plant proteins. Sensitive prediction from sequence- and genome-wide studies for Arabidopsis and rice.Plant Physiol. 133, 1691–1701.

    Article  CAS  PubMed  Google Scholar 

  89. Eisenhaber, B., Schneider, G., Wildpaner, M., and Eisenhaber, F. (2004) A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe.J. Mol. Biol. 337, 243–253.

    Article  CAS  PubMed  Google Scholar 

  90. Nishikawa, K. and Ooi, T. (1982) Correlation of the amino acid composition of a protein to its structural and biological characters.J. Biochem. (Tokyo) 91, 1821–1824.

    CAS  Google Scholar 

  91. Andrade, M. A., O’Donoghue, S. I., and Rost, B. (1998) Adaptation of protein surfaces to subcellular location.J. Mol. Biol. 276, 517–525.

    Article  CAS  PubMed  Google Scholar 

  92. Nakashima, H. and Nishikawa, K. (1994) Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies.J. Mol. Biol. 238, 54–61.

    Article  CAS  PubMed  Google Scholar 

  93. Cedano, J., Aloy, P., Perez-Pons, J. A., and Querol, E. (1997) Relation between amino acid composition and cellular location of proteins.J. Mol. Biol. 266, 594–600.

    Article  CAS  PubMed  Google Scholar 

  94. Reinhardt, A. and Hubbard, T. (1998) Using neural networks for prediction of the subcellular location of proteins.Nucleic Acids Res. 26, 2230–2236.

    Article  CAS  PubMed  Google Scholar 

  95. Yuan, Z. (1999) Prediction of protein subcellular locations using Markov chain models.FEBS Lett. 451, 23–26.

    Article  CAS  PubMed  Google Scholar 

  96. Hua, S. and Sun, Z. (2001) Support vector machine approach for protein subcellular localization prediction.Bioinformatics 17, 721–728.

    Article  CAS  PubMed  Google Scholar 

  97. Feng, Z. P. and Zhang, C. T. (2001) Prediction of the subcellular location of prokaryotic proteins based on the hydrophobicity index of amino acids.Int. J. Biol. MacroMol. 28, 255–261.

    Article  PubMed  Google Scholar 

  98. Cai, Y. D., Liu, X. J., Xu, X. B., and Chou, K. C. (2000) Support vector machines for prediction of protein subcellular location.Mol. Cell Biol. Res. Commun. 4, 230–233.

    Article  CAS  PubMed  Google Scholar 

  99. Stapley, B. J., Kelley, L. A., and Sternberg, M. J. (2002) Predicting the sub-cellular location of proteins from text using support vector machines.Pac. Symp. Biocomput.374–385.

    Google Scholar 

  100. Park, K. J., and Kanehisa, M. (2003) Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs.Bioinformatics 19, 1656–1663.

    Article  CAS  PubMed  Google Scholar 

  101. Yu, C. S., Lin, C. J., and Hwang, J. K. (2004) Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions.Protein Sci. 13, 1402–1406.

    Article  CAS  PubMed  Google Scholar 

  102. Bhasin, M. and Raghava, G.P. (2004) ESLpred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST.Nucleic Acids Res. 32, W414–419.

    Article  CAS  PubMed  Google Scholar 

  103. Bhasin, M., Garg, A., and Raghava, G. P. (2005) PSLpred: prediction of subcellular localization of bacterial proteins.Bioinformatics 21, 2522–2524.

    Article  CAS  PubMed  Google Scholar 

  104. Garg, A., Bhasin, M., and Raghava, G. P. (2005) Support vector machine-based method for subcellular localization of human proteins using amino acid compositions, their order, and similarity search.J. Biol. Chem 280, 14427–14432.

    Article  CAS  PubMed  Google Scholar 

  105. Gardy, J. L., Spencer, C., Wang, K., et al. (2003) PSORT-B: improving protein subcellular localization prediction for Gram-negative bacteria.Nucleic Acids Res.bi 31, 3613–3617.

    Article  CAS  PubMed  Google Scholar 

  106. Horton, P., Park, K. J., Kobayashi, T., and Nakai, K. (2006) Protein subcellular localization prediction with WoLF PSORT, in4th Asia-Pacific Bioinformatics Conference(T. Jiang, et al., eds.), Imperial College Press, London, pp. 39–48,

    Google Scholar 

  107. Nair, R. and Rost, B. (2002) Sequence conserved for subcellular localization.Protein Sci. 11, 2836–2847.

    Article  CAS  PubMed  Google Scholar 

  108. Chou, K. C. and Cai, Y. D. (2002) Using functional domain composition and support vector machines for prediction of protein subcellular location.J. Biol. Chem. 277, 45765–45769.

    Article  CAS  PubMed  Google Scholar 

  109. Cai, Y. D. and Chou, K. C. (2003) Nearest neighbour algorithm for predicting protein subcellular location by combining functional domain composition and pseudo-amino acid composition.Biochem. Biophys. Res.Commun.305, 407–411.

    Article  CAS  PubMed  Google Scholar 

  110. Guda, C. and Subramaniam, S. (2005) pTARGET (corrected) a new method for predicting protein subcellular localization in eukaryotes.Bioinformatics 21, 3963–3969.

    Article  CAS  PubMed  Google Scholar 

  111. Xie, D., Li, A., Wang, M., Fan, Z., and Feng, H. (2005) LOCSVMPSI: a web server for subcellular localization of eukaryotic proteins using SVM and profile of PSI-BLAST.Nucleic Acids Res. 33, W105–110.

    Article  CAS  PubMed  Google Scholar 

  112. Gorlich, D. (1997) Nuclear protein import.Curr. Opin. Cell Biol. 9, 412–419.

    CAS  Google Scholar 

  113. Nair, R. and Rost, B. (2003) LOC3D: annotate sub-cellular localization for protein structures.Nucleic Acids Res. 31, 3337–3340.

    Article  CAS  PubMed  Google Scholar 

  114. Boeckmann, B., Bairoch, A., Apweiler, R., et al. (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003.Nucleic Acids Res. 31, 365–370.

    Article  CAS  PubMed  Google Scholar 

  115. Eisenhaber, F. and Bork, P. (1999) Evaluation of human-readable annotation in biomolecular sequence databases with biological rule libraries.Bioinformatics 15, 528–535.

    Article  CAS  PubMed  Google Scholar 

  116. Nair, R. and Rost, B. (2002) Inferring sub-cellular localization through automated lexical analysis.Bioinformatics 18 (Suppl. 1), S78–86.

    PubMed  Google Scholar 

  117. Lu, Z., Szafron, D., Greiner, R., et al. (2004) Predicting subcellular localization of proteins using machine-learned classifiers.Bioinformatics 20, 547–556.

    Article  CAS  PubMed  Google Scholar 

  118. Murphy, R. F., Boland, M. V., and Velliste, M. (2000) Towards a systematics for protein subcelluar location: quantitative description of protein localization patterns and automated analysis of fluorescence microscope images.Proc. Int. Conf. Intell. Syst. Mol. Biol. 8, 251–259.

    CAS  PubMed  Google Scholar 

  119. Boland, M. V. and Murphy, R. F. (2001) A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells.Bioinformatics 17, 1213–1223.

    Article  CAS  PubMed  Google Scholar 

  120. Drawid, A. and Gerstein, M. (2000) A Bayesian system integrating expression data with sequence patterns for localizing proteins: comprehensive application to the yeast genome.J. Mol.Biol. 301, 1059–1075.

    Article  CAS  PubMed  Google Scholar 

  121. Matsuda, S., Vert, J. P., Saigo, H., Ueda, N., Toh, H., and Akutsu, T. (2005) A novel representation of protein sequences for prediction of subcellular location using support vector machines.Protein Sci. 14, 2804–2813.

    Article  CAS  PubMed  Google Scholar 

  122. Vapnik, V. (1998)Statistical Learning Theory, Wiley-Interscience, New York.

    Google Scholar 

  123. Cristianini, N. and Shawe-Taylor, J. (2000)An Introduction to Support Vector Machines, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  124. Scholkopf, B. and Smola, A. J. (2002)Learning with Kernels, MIT Press, Cambridge, MA.

    Google Scholar 

  125. Joachims, T. (1999) Making large-scale SVM learning practical, inAdvances in Kernel Methods—Support Vector Learning(Scholkopf, B., Burges, C., and Smola, A., eds.), MIT Press, Cambridge, MA.

    Google Scholar 

  126. Chang, C.-C. and Lin, C.-J. (2001) LIBSVM: a library for support vector machines.

    Google Scholar 

  127. Duda, R. O., Hart, P. E., and Stork, D. G. (2000)Pattern Classification, 2nd ed., John Wiley & Sons, New York.

    Google Scholar 

  128. Horton, P. and Nakai, K. (1997) Better prediction of protein cellular localization sites with the k nearest neighbors classifier.Proc. Int. Conf. Intell. Syst. Mol.Biol. 5, 147–152.

    CAS  PubMed  Google Scholar 

  129. Huang, Y. and Li, Y. (2004) Prediction of protein subcellular locations using fuzzy k-NN method.Bioinformatics 20, 21–28.

    Article  CAS  PubMed  Google Scholar 

  130. Nakai, K. and Kanehisa, M. (1991) Expert system for predicting protein localization sites in gram-negative bacteria.Proteins 11, 95–110.

    Article  CAS  PubMed  Google Scholar 

  131. Horton, P. and Nakai, K. (1996) A probabilistic classification system for predicting the cellular localization sites of proteins.Proc. Int. Conf. Intell. Syst. Mol. Biol. 4, 109–115.

    CAS  PubMed  Google Scholar 

  132. Nair, R. and Rost, B. (2005) Mimicking cellular sorting improves prediction of subcellular localization.J. Mol. Biol. 348, 85–100.

    Article  CAS  PubMed  Google Scholar 

  133. Goldfarb, D. S., Gariepy, J., Schoolnik, G., and Kornberg, R. D. (1986) Synthetic peptides as nuclear localization signals.Nature 322, 641–644.

    Article  CAS  PubMed  Google Scholar 

  134. Klug, A. and Schwabe, J. W. (1995) Protein motifs 5. Zinc fingers.FASEB J. 9, 597–604.

    CAS  PubMed  Google Scholar 

  135. Mingot, J. M., Espeso, E. A., Diez, E., and Penalva, M. A. (2001) Ambient pH signaling regulates nuclear localization of the Aspergillus nidulans PacC transcription factor.Mol. Cell Biol. 21, 1688–1699.

    Article  CAS  PubMed  Google Scholar 

  136. LaCasse, E. C. and Lefebvre, Y. A. (1995) Nuclear localization signals overlap DNA- or RNA-binding domains in nucleic acid-binding proteins.Nucleic Acids Res. 23, 1647–1656.

    Article  CAS  PubMed  Google Scholar 

  137. Lim, A. and Li, B. F. (1996) The nuclear targeting and nuclear retention properties of a human DNA repair protein O6-methylguanine-DNA methyltransferase are both required for its nuclear localization: the possible implications.EMBO J. 15, 4050–4060.

    CAS  PubMed  Google Scholar 

  138. Ashburner, M., Ball, C. A., Blake, J. A., et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.Nat. Genet. 25, 25–29.

    Article  CAS  PubMed  Google Scholar 

  139. The Treacher Collins Syndrome Collaborative Group. (1996) Positional cloning of a gene involved in the pathogenesis of Treacher Collins syndrome.Nat. Genet. 12, 130–136.

    Article  Google Scholar 

  140. Wise, C. A., Chiang, L. C., Paznekas, W. A., et al. (1997) TCOF1 gene encodes a putative nucleolar phosphoprotein that exhibits mutations in Treacher Collins Syndrome throughout its coding region.Proc. Natl. Acad. Sci. USA 94, 3110–3115.

    Article  CAS  PubMed  Google Scholar 

  141. Winokur, S. T. and Shiang, R. (1998) The Treacher Collins syndrome (TCOF1) gene product, treacle, is targeted to the nucleolus by signals in its C-terminus.Hum. Mol.Genet. 7, 1947–1952.

    Article  CAS  PubMed  Google Scholar 

  142. Marsh, K. L., Dixon, J., and Dixon, M. J. (1998) Mutations in the Treacher Collins syndrome gene lead to mislocalization of the nucleolar protein treacle.Hum. Mol.Genet. 7, 1795–1800.

    Article  CAS  PubMed  Google Scholar 

  143. Isaac, C., Marsh, K. L., Paznekas, W. A., et al. (2000) Characterization of the nucleolar gene product, treacle, in Treacher Collins syndrome.Mol. Biol. Cell 11, 3061–3071.

    CAS  PubMed  Google Scholar 

  144. Taagepera, S., McDonald, D., Loeb, J. E., et al. (1998) Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase.Proc. Natl. Acad. Sci. USA 95, 7457–7462.

    Article  CAS  PubMed  Google Scholar 

  145. Antelmann, H., Tjalsma, H., Voigt, B., et al. (2001) A proteomic view on genome-based signal peptide predictions.Genome Res. 11, 1484–1502.

    Article  CAS  PubMed  Google Scholar 

  146. Tjalsma, H., Antelmann, H., Jongbloed, J. D., et al. (2004) Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretome.Microbiol. Mol. Biol. Rev. 68, 207–233.

    Article  CAS  PubMed  Google Scholar 

  147. Tjalsma, H. and van Dijl, J.M. (2005) Proteomics-based consensus prediction of protein retention in a bacterial membrane.Proteomics 5,4472–4482.

    Article  CAS  PubMed  Google Scholar 

  148. Nakai, K. (1996) Refinement of the prediction methods of signal peptides for the genome analyses of Saccharomyces cerevisiae and Bacillus subtilis, inGenome Informatics Workshop(Akutsu, T., et al., eds.), Universal Academy Press, Tokyo, pp. 72–81.

    Google Scholar 

  149. Lewenza, S., Gardy, J. L., Brinkman, F. S., and Hancock, R. E. (2005) Genome-wide identification of Pseudomonas aeruginosa exported proteins using a consensus computational strategy combined with a laboratory-based PhoA fusion screen.Genome Res. 15, 321–329.

    Article  CAS  PubMed  Google Scholar 

  150. looseness-1Rey, S., Gardy, J. L., and Brinkman, F. S. (2005) Assessing the precision of high-throughput computational and laboratory approaches for the genome-wide identification of protein subcellular localization in bacteria.BMC Genomics 6, 162.

    Article  PubMed  CAS  Google Scholar 

  151. Warnock, D. E., Fahy, E., and Taylor, S. W. (2004) Identification of protein associations in organelles, using mass spectrometry-based proteomics.Mass Spectrom. Rev. 23, 259–280.

    Article  CAS  PubMed  Google Scholar 

  152. Kumar, A., Agarwal, S., Heyman, J. A., et al. (2002) Subcellular localization of the yeast proteome.Genes Dev. 16, 707–719.

    Article  CAS  PubMed  Google Scholar 

  153. Huh, W. K., Falvo, J. V., Gerke, L. C., et al. (2003) Global analysis of protein localization in budding yeast.Nature 425, 686–691.

    Article  CAS  PubMed  Google Scholar 

  154. Clark, H. F., Gurney, A. L., Abaya, E., et al. (2003) The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment.Genome Res. 13, 2265–2270.

    Article  CAS  PubMed  Google Scholar 

  155. Millar, A. H., Heazlewood, J. L., Kristensen, B. K., Braun, H. P., and Moller, I. M. (2005) The plant mitochondrial proteome.Trends Plant Sci. 10, 36–43.

    Article  CAS  PubMed  Google Scholar 

  156. Heazlewood, J. L., Tonti-Filippini, J., Verboom, R. E., and Millar, A. H. (2005) Combining experimental and predicted datasets for determination of the subcellular location of proteins in Arabidopsis.Plant Physiol. 139, 598–609.

    Article  CAS  PubMed  Google Scholar 

  157. Schmitt, S., Prokisch, H., Schlunck, T., et al. (2006) Proteome analysis of mitochondrial outer membrane from Neurospora crassa.Proteomics 6, 72–80.

    Article  CAS  PubMed  Google Scholar 

  158. Peltier, J..B., Emanuelsson, O., Kalume, D. E., et al. (2002) Central functions of the lumenal and peripheral thylakoid proteome of Arabidopsis determined by experimentation and genome-wide prediction.Plant Cell 14, 211–236.

    Article  CAS  Google Scholar 

  159. Friso, G., Giacomelli, L., Ytterberg, A. J., et al. (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database.Plant Cell 16, 478–499.

    Article  CAS  PubMed  Google Scholar 

  160. Sun, Q., Emanuelsson, O., and van Wijk, K. J. (2004) Analysis of curated and predicted plastid subproteomes of Arabidopsis. Subcellular compartmentalization leads to distinctive proteome properties.Plant Physiol. 135, 723–734.

    Article  CAS  PubMed  Google Scholar 

  161. Bayer, E. M., Bottrill, A. R., Walshaw, J., et al. (2006) Arabidopsis cell wall proteome defined using multidimensional protein identification technology.Proteomics 6, 301–311.

    Article  CAS  PubMed  Google Scholar 

  162. Schwacke, R., Flugge, U. I., and Kunze, R. (2004) Plant membrane proteome databases.Plant Physiol. Biochem. 42, 1023–1034.

    Article  CAS  PubMed  Google Scholar 

  163. Hwang, S. I., Lundgren, D. H., Mayya, V., et al. (2006) Systematic characterization of nuclear proteome from human T leukemia cells: a quantitative proteomic study during apoptosis by differential extraction and stable isotope labeling.Mol. Cell Proteomics.5, 1131–1145.

    Article  CAS  PubMed  Google Scholar 

  164. Nair, R. and Rost, B. (2004) LOCnet and LOCtarget: sub-cellular localization for structural genomics targets.Nucleic Acids Res. 32, W517–521.

    Article  CAS  PubMed  Google Scholar 

  165. Nakai, K. and Horton, P. (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization.Trends Biochem. Sci. 24, 34–36.

    Article  CAS  PubMed  Google Scholar 

  166. Gardy, J. L., Laird, M. R., Chen, F., et al. (2005) PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis.Bioinformatics 21, 617–623.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Project on Protein and Functional Analysis and Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Nakai, K., Horton, P. (2007). Computational Prediction of Subcellular Localization. In: van der Giezen, M. (eds) Protein Targeting Protocols. Methods in Molecular Biology™, vol 390. Humana Press. https://doi.org/10.1007/978-1-59745-466-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-466-7_29

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-702-0

  • Online ISBN: 978-1-59745-466-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics