Skip to main content

Studying Protein Export From the Endoplasmic Reticulum in Plants

  • Protocol
Protein Targeting Protocols

Understanding the mechanisms of protein sorting and targeting through the plant secretory pathway has become the focus of many research laboratories. The development of a model system whereby recombinant genes can be transiently expressed in protoplasts has facilitated the study of protein transport signals. Experimental strategies combining a protoplast expression system with endoglycosidase H, vacuole purification, and pulse-chase analyses are used to investigate aspects of specific proteins as they pass through the secretory system. This chapter provides details of protoplast preparation and electroporation as well as techniques to study protein trafficking from the endoplasmic reticulum to the Golgi apparatus or vacuolar compartments. Recommendations as to how to troubleshoot problems that can arise while following these protocols are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuasa, K., Toyooka, K., Fukuda, H., and Matsuoka, K. (2005) Membrane-anchored prolyl hydroxylase with an export signal from the endoplasmic reticulum. Plant J. 41, 81–94.

    Article  CAS  PubMed  Google Scholar 

  2. Hanton, S. L., Bortolotti, L. E., Renna, L., Stefano, G., and Brandizzi, F. (2005) Crossing the divide—transport between the endoplasmic reticulum and Golgi apparatus in plants. Traffic 6, 267–277.

    Article  CAS  PubMed  Google Scholar 

  3. Contreras, I., Yang, Y., Robinson, D. G., and Aniento, F. (2004) Sorting signals in the cytosolic tail of plant p24 proteins involved in the interaction with the COPII coat. Plant Cell Physiol. 45, 1779–1786.

    Article  CAS  PubMed  Google Scholar 

  4. Vitale, A. and Denecke, J. (1999) The endoplasmic reticulum-gateway of the secretory pathway. Plant Cell 11, 615–628.

    Article  CAS  PubMed  Google Scholar 

  5. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantar. 15, 473–497.

    Article  CAS  Google Scholar 

  6. Gamborg, O. L. and Eveleigh, D. E. (1968) Culture methods and detection of glucanases in suspension cultures of wheat and barley. Can. J. Biochem. 46, 417–421.

    Article  CAS  PubMed  Google Scholar 

  7. Crofts, A. J., Leborgne-Castel, N., Hillmer, S., et al. (1999) Saturation of the endoplasmic reticulum retention machinery reveals anterograde bulk flow. Plant Cell 11, 2233–2248.

    Article  CAS  PubMed  Google Scholar 

  8. Maley, F., Trimble, R. B., Tarentino, A. L., and Plummer, T. H., Jr. (1989) Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal. Biochem. 180, 195–204.

    Article  CAS  PubMed  Google Scholar 

  9. Lippincott-Schwartz, J., Yuan, L. C., Bonifacino, J. S., and Klausner, R. D. (1989) Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56, 801–813.

    Article  CAS  PubMed  Google Scholar 

  10. Crofts, A. J., Leborgne-Castel, N., Pesca, M., Vitale, A., and Denecke, J. (1998) BiP and calreticulin form an abundant complex that is independent of endoplasmic reticulum stress. Plant Cell 10, 813–824.

    Article  CAS  PubMed  Google Scholar 

  11. Masters, S. C. (2004) Co-immunoprecipitation from transfected cells. Methods Mol. Biol. 261, 337–350.

    CAS  PubMed  Google Scholar 

  12. Hanton, S. L., Renna, L., Bortolotti, L. E., Chatre, L., Stefano, G., and Brandizzi, F. (2005) Diacidic motifs influence the export of transmembrane proteins from the endoplasmic reticulum in plant cells. Plant Cell 17, 3081–3093.

    Article  CAS  PubMed  Google Scholar 

  13. Brandizzi, F., Hanton, S., DaSilva, L. L., et al. (2003) ER quality control can lead to retrograde transport from the ER lumen to the cytosol and the nucleoplasm in plants. Plant J. 34, 269–281.

    Article  CAS  PubMed  Google Scholar 

  14. Brandizzi, F., Frangne, N., Marc-Martin, S., Hawes, C., Neuhaus, J. M., and Paris, N. (2002) The destination for single-pass membrane proteins is influenced markedly by the length of the hydrophobic domain. Plant Cell 14, 1077–1092.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Hanton, S.L., Matheson, L.A., Brandizzi, F. (2007). Studying Protein Export From the Endoplasmic Reticulum in Plants. In: van der Giezen, M. (eds) Protein Targeting Protocols. Methods in Molecular Biology™, vol 390. Humana Press. https://doi.org/10.1007/978-1-59745-466-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-466-7_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-702-0

  • Online ISBN: 978-1-59745-466-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics