Skip to main content

Epitope Mapping of Antibody–Antigen Complexes by Nuclear Magnetic Resonance Spectroscopy

  • Protocol
  • First Online:
Epitope Mapping Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 524))

Summary

Nuclear magnetic resonance (NMR) is a very powerful tool for determining the boundaries of peptide epitopes recognized by antibodies. NMR can be used to study antibodies in complexes that exhibit a wide range of binding affinities from very weak and transient to very tight. Choice of the specific method depends upon the dissociation constant, especially the ligand off-rate.

Epitope mapping by NMR is based on the difference in mobility between the amino acid residues of a peptide antigen that interact tightly with the antibody and residues outside the epitope that do not interact with the antibody. The interacting peptide residues become considerably immobilized upon binding. Their mobility will resemble that of the antibody’s residues. Several NMR methods were developed based on these characteristics. In this chapter we discuss some of these methods, including dynamic filtering, comparison of 1H-15N HSQC peaks’ intensities, transverse relaxation time, measurements of 1H-15N nuclear Overhauser effect (NOE) values, and measurements of T relaxation time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams, D. C., Jr., Rule, G. S., Poljak, R. J., and Benjamin, D. C. (1997) Reduction in the amide hydrogen exchange rates of an antilysozyme Fv fragment due to formation of the Fv–lysozyme complex. J. Mol. Biol. 270, 751–762.

    Article  PubMed  CAS  Google Scholar 

  2. Tugarinov, V., Zvi, A., Levy, A., Hayek, Y., Matsushita, S., and Anglister, J. (2000) NMR structure of an anti-gp120 antibody complex with a V3 peptide reveals a surface important for co-receptor binding. Struct. Fold. Des. 8, 385–395.

    Article  CAS  Google Scholar 

  3. Rosen, O., Chill, J., Sharon, M., Kessler, N., Mester, B., Zolla-Pazner, S., and Anglister, J. (2005) Induced fit in HIV-neutralizing antibody complexes: evidence for alternative conformations of the gp120 V3 loop and the molecular basis for broad neutralization. Biochemistry 44, 7250–7258.

    Article  PubMed  CAS  Google Scholar 

  4. Rosen, O., Sharon, M., Quadt-Akabayov, S. R., and Anglister, J. (2006) Molecular switch for alternative conformations of the HIV-1 V3 region: implications for phenotype conversion. Proc. Natl. Acad. Sci. USA 103, 13950–13955.

    Article  PubMed  CAS  Google Scholar 

  5. Sharon, M., Kessler, N., Levy, R., Zolla-Pazner, S., Gorlach, M. and Anglister, J. (2003) Alternative conformations of HIV-1 V3 loops mimic beta hairpins in chemokines, suggesting a mechanism for coreceptor selectivity. Structure 11, 225–236.

    Article  PubMed  CAS  Google Scholar 

  6. Sharon, M., Rosen, O., and Anglister, J. (2005) NMR studies of V3 peptide complexes with antibodies suggest a mechanism for HIV-1 co-receptor selectivity. Curr. Opin. Drug Discov. Dev. 8, 601–612.

    CAS  Google Scholar 

  7. Scherf, T., Hiller, R., Naider, F., Levitt, M., and Anglister, J. (1992) Induced peptide conformations in different antibody complexes: molecular modeling of the three-dimensional structure of peptide–antibody complexes using NMR-derived distance restraints. Biochemistry 31, 6884–6897.

    Article  PubMed  CAS  Google Scholar 

  8. Zilber, B., Scherf, T., Levitt, M., and Anglister, J. (1990) NMR-derived model for a peptide–antibody complex. Biochemistry 29, 10032–10041.

    Article  PubMed  CAS  Google Scholar 

  9. Zvi, A., Feigelson, D. J., Hayek, Y., and Anglister, J. (1997) Conformation of the principal neutralizing determinant of human immunodeficiency virus type 1 in complex with an anti-gp120 virus neutralizing antibody studied by two-dimensional nuclear magnetic resonance difference spectroscopy. Biochemistry 36, 8619–8627.

    Article  PubMed  CAS  Google Scholar 

  10. Zvi, A., Kustanovich, I., Feigelson, D., Levy, R., Eisenstein, M., Matsushita, S., Richalet Secordel, P., Regenmortel, M. H., and Anglister, J. (1995) NMR mapping of the antigenic determinant recognized by an anti-gp120, human immunodeficiency virus neutralizing antibody. Eur. J. Biochem. 229, 178–187.

    Article  PubMed  CAS  Google Scholar 

  11. Zvi, A., Tugarinov, V., Faiman, G. A., Horovitz, A., and Anglister, J. (2000) A model of a gp120 V3 peptide in complex with an HIV-neutralizing antibody based on NMR and mutant cycle-derived constraints. Eur. J. Biochem. 267, 767–779.

    Article  PubMed  CAS  Google Scholar 

  12. Scherf, T., and Anglister, J. (1993) A T1 rho-filtered two-dimensional transferred NOE spectrum for studying antibody interactions with peptide antigens. Biophys. J. 64, 754–761.

    Article  PubMed  CAS  Google Scholar 

  13. Samson, A. O., Chill, J. H., Rodriguez, E., Scherf, T., and Anglister, J. (2001) NMR mapping and secondary structure determination of the major acetylcholine receptor alpha-subunit determinant interacting with alpha-bungarotoxin. Biochemistry 40, 5464–5473.

    Article  PubMed  CAS  Google Scholar 

  14. Sattler, M., Schleucher, J., and Griesinger, C. (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 34, 93–158.

    Article  CAS  Google Scholar 

  15. Kay, L. E., Torchia, D. A., and Bax, A. (1989) Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972–8979.

    Article  PubMed  CAS  Google Scholar 

  16. Ishima, R., Wingfield, P. T., Stahl, S. J., Kaufman, J. D., and Torchia, D. A. (1998) Using amide 1H and 15N transverse relaxation to detect millisecond time-scale motions in perdeuterated proteins: application to HIV-1 protease. J. Am. Chem. Soc. 120, 10534–10542.

    Article  CAS  Google Scholar 

  17. Samson, A. O., Chill, J. H., and Anglister, J. (2005) Two-dimensional measurement of proton T1rho relaxation in unlabeled proteins: mobility changes in alpha-bungarotoxin upon binding of an acetylcholine receptor peptide. Biochemistry 44, 10926–10934.

    Article  PubMed  CAS  Google Scholar 

  18. Gross, E. (1967) The cyanogen bromide reaction, in Methods in Enzymology (Hirs, C. H. W.), Academic, New York, NY, pp. 238–255.

    Google Scholar 

  19. Kaiser, R., and Metzka, L. (1999) Enhancement of cyanogen bromide cleavage yields for methionyl-serine and methionyl-threonine peptide bonds. Anal. Biochem. 266, 1–8.

    Article  PubMed  CAS  Google Scholar 

  20. Wuthrich, K. (ed.) (1986) NMR of proteins and nucleic acids. Wiley, New York, NY, pp. 130–161.

    Google Scholar 

  21. Braunschweiler, L., and Ernst, R. R. (1983) Coherence transfer of isotropic mixing: application to proton correlation spectroscopy. J. Magn. Reson. 53, 521–528.

    CAS  Google Scholar 

  22. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293.

    Article  PubMed  CAS  Google Scholar 

  23. Shaka, A. J., Keeler, J., and Freeman, R. (1983) Evaluation of a new broadband decoupling sequence: WALTZ-16. J. Magn. Reson. 53, 313–340.

    CAS  Google Scholar 

  24. Piotto, M., Saudek, V., and Sklenar, V. (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR 2, 661–665.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Avraham Samson, Anat Zvi, Irina Kustanovic, Michal Sharon, and Naama Kessler, who did some of the studies described in this chapter. We gratefully acknowledge help from Dr. Tali Scherf in maintaining the NMR spectrometers and setting up some of the experiments. We thank Dr. Sandy Livnat for editorial assistance. This study was supported by the National Institute of Health Grant GM 53329 to Jacob Anglister who is the Dr. Joseph and Ruth Owades Professor of Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Anglister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rosen, O., Anglister, J. (2009). Epitope Mapping of Antibody–Antigen Complexes by Nuclear Magnetic Resonance Spectroscopy. In: Schutkowski, M., Reineke, U. (eds) Epitope Mapping Protocols. Methods in Molecular Biology™, vol 524. Humana Press. https://doi.org/10.1007/978-1-59745-450-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-450-6_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-17-6

  • Online ISBN: 978-1-59745-450-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics