Skip to main content

Synthetic Hydrogel Matrices for Guided Bladder Tissue Regeneration

  • Protocol
Tissue Engineering

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 140))

Summary

Tissue engineering aims to provide a temporary scaffold for repair at the site of injury or disease that is able to support cell attachment and growth while synthesis of matrix proteins and reorganization take place. Although relatively successful, bladder tissue engineering suffers from the formation of scar tissue at the scaffold implant site partly due to the phenotypic switch of smooth muscle cells (SMCs) from a quiescent contractile phenotype to a synthetic proliferative phenotype, known as myofibroblast. We hypothesize that culturing human SMCs in enzymatically degradable poly(ethylene) glycol (PEG) hydrogels modified with integrin-binding peptides, and in co-culture with human urothelial cells (UCs), will offer some insight as to the required environment for their subsequent differentiation into quiescent SMCs. We have established protocols for isolation, culture, and characterization of human bladder UCs, SMCs, and fibroblasts and investigated co-culture conditions for SMCs and UCs. The optimal PEG hydrogel properties, promoting growth of these cells, have been investigated by varying the amounts of cell adhesion peptide, PEG, and crosslinker and examined using light and fluorescence microscopy. Furthermore, the cell organization within and on top of gels 14 days post seeding has been examined by histology and immunohistochemistry. We have investigated a co-culture model for UCs and SMCs integrated into PEG hydrogels, mimicking a section of the bladder wall for reconstructive purposes that also could contribute to the understanding of the underlying basic mechanisms of SMC differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oberpenning, F., Meng, J., Yoo, J. J., and Atala, A. (1999) De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat. Biotechnol. 17, 149–155.

    Article  CAS  Google Scholar 

  2. Kim, W. J. H. (2000) Cellular signaling in tissue regeneration. Yonsei Med. J. 41, 692–703.

    CAS  Google Scholar 

  3. Badylak, S. F. (2004) Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl. Immunol. 12, 367–377.

    Article  CAS  Google Scholar 

  4. Kanematsu, A., Yamamoto, S., Ozeki, M., Noguchi, T., Kanatani, I., Ogawa, O., and Tabata, Y. (2004) Collagenous matrices as release carriers of exogenous growth factors. Biomaterials 25, 4513–4520.

    Article  CAS  Google Scholar 

  5. Cross, W. R., Eardley, I., Leese, H. J., and Southgate, J. (2005) A biomimetic tissue from cultured normal human urothelial cells: analysis of physiological function. Am. J. Physiol. Renal Physiol. 289, F459–F468.

    Article  CAS  Google Scholar 

  6. Sutherland, R. S., Baskin, L. S., Hayward, S. W., and Cunha, G. R. (1996) Regeneration of bladder urothelium, smooth muscle, blood vessels and nerves into an acellular tissue matrix. J. Urol. 156, 571–577.

    Article  CAS  Google Scholar 

  7. Kropp, B. P., Badylak, S., and Thor, K. B. (1995) Regenerative bladder augmentation: a review of the initial preclinical studies with porcine small intestinal submucosa. Adv. Exp. Med. Biol. 385, 229–235.

    CAS  Google Scholar 

  8. Kropp, B. P., Rippy, M. K., Badylak, S. F., Adams, M. C., Keating, M. A., Rink, R. C., and Thor, K. B. (1996) Regenerative urinary bladder augmentation using small intestinal submucosa: urodynamic and histopathologic assessment in long-term canine bladder augmentations. J. Urol. 155, 2098–2104.

    Article  CAS  Google Scholar 

  9. Probst, M., Dahiya, R., Carrier, S., and Tanagho, E. A. (1997) Reproduction of functional smooth muscle tissue and partial bladder replacement. Br. J. Urol. 79, 505–515.

    CAS  Google Scholar 

  10. Yoo, J. J., Meng, J., Oberpenning, F., and Atala, A. (1998) Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology 51, 221–225.

    Article  CAS  Google Scholar 

  11. Lutolf, M. P. and Hubbell, J. A. (2003) Synthesis and physicochemical characterization of end-linked poly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 4, 713–722.

    Article  CAS  Google Scholar 

  12. Hubschmid, U., Leong-Morgenthaler, P. M., Basset-Dardare, A., Ruault, S., and Frey, P. (2005) In vitro growth of human urinary tract smooth muscle cells on laminin and collagen type I-coated membranes under static and dynamic conditions. Tissue Eng. 11, 161–171.

    Article  CAS  Google Scholar 

  13. Southgate, J., Masters, J. R. W., and Trejdosiewicz, L. K. (2002) Culture of human urothelium, in Culture of Epithelial Cells (Freshney, R. I. F. and Freshney, M. G., eds), Wiley-Liss, New York, NY, pp. 381–399.

    Google Scholar 

  14. Sugasi, S., Lesbros, Y., Bisson, I., Zhang, Y. Y., Kucera, P., and Frey, P. (2000) In vitro engineering of human stratified urothelium: analysis of its morphology and function. J. Urol. 164, 51–957.

    Article  Google Scholar 

  15. Gomm, J. J., Browne, P. J., Coope, R. C., Liu, Q. Y., Buluwela, L., and Coombes, R. C. (1995) Isolation of pure populations of epithelial and myoepithelial cells from the normal human mammary gland using immunomagnetic separation with Dynabeads. Anal. Biochem. 226, 91–9.

    Article  CAS  Google Scholar 

  16. Lutolf, M. P., Raeber, G. P., Zisch, A. H., Tirelli, N., and Hubbell, J. A. (2003) Cell-responsive synthetic hydrogels. Adv. Mater. 15, 888–892.

    Article  CAS  Google Scholar 

  17. Lutolf, M. P., Weber, F. E., Schmoekel, H. G., Schense, J. C., Kohler, T., Muller, R., and Hubbell, J. A. (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat. Biotechnol. 21, 513–518.

    Article  CAS  Google Scholar 

  18. Zisch, A. H., Lutolf, M. P., Ehrbar, M., Raeber, G. P., Rizzi, S. C., Davies, N., Schmokel, H., Bezuidenhout, D., Djonov, V., Zilla, P., and Hubbell, J. A. (2003) Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J. 17, 2260–2262.

    CAS  Google Scholar 

  19. Zisch, A. H., Lutolf, M. P., and Hubbell, J. A. (2003) Biopolymeric delivery matrices for angiogenic growth factors. Cardiovasc. Pathol. 12, 295–310.

    Article  CAS  Google Scholar 

  20. Blindt, R., Krott, N., Hanrath, P., vom Dahl, J., van Eys, G., and Bosserhoff, A. K. (2002) Expression patterns of integrins on quiescent and invasive smooth muscle cells and impact on cell locomotion. J. Mol. Cell. Cardiol. 34, 1633–1644.

    Article  CAS  Google Scholar 

  21. Moiseeva, E. P. (2001) Adhesion receptors of vascular smooth muscle cells and their functions. Cardiovasc. Res. 52, 372–386.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Tatiana Segura (UCLA, CA, USA), Professor Jeffrey Hubbell, and Carolyn Yong (EPFL, Switzerland) for their scientific advice and technical support. This work was supported by the Swiss National Science Foundation NCCR 404640-101113.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Adelöw, C.A., Frey, P. (2007). Synthetic Hydrogel Matrices for Guided Bladder Tissue Regeneration. In: Hauser, H., Fussenegger, M. (eds) Tissue Engineering. Methods in Molecular Medicine™, vol 140. Humana Press. https://doi.org/10.1007/978-1-59745-443-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-443-8_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-756-3

  • Online ISBN: 978-1-59745-443-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics