Skip to main content

Biomaterials/Scaffolds

  • Protocol
Tissue Engineering

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 140))

Summary

Current clinical therapies for traumatic or chronic injuries involving osteochondral tissue result in temporary pain reduction and filling of the defect but with biomechanically inferior repair tissue. Tissue engineering of osteochondral repair tissue using autologous cells and bioactive biomaterials has the potential to overcome the current limitations and results in native-like repair tissue with good integration capabilities. For this reason, we applied two modern biomaterial design techniques, namely, electrospinning and fused deposition modeling (FDM), to produce bioactive poly(ε-caprolactone)/collagen (PCL/Col) type I and type II–PCL-tri-calcium phosphate (TCP)/Col composites for precursor cell-based osteochondral repair. The application of these two design techniques (electrospinning and FDM) allowed us to specifically produce the a suitable three-dimensional (3D) environment for the cells to grow into a particular tissue (cartilage and bone) in vitro prior to in vivo implantation. We hypothesize that our new designed biomaterials, seeded with autologous bone marrow-derived precursor cells, in combination with bioreactor-stimulated cell-culture techniques can be used to produce clinically relevant osteochondral repair tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Messner, K. (1996) The longterm prognosis for severe damage to weight-bearing cartilage in the knee. A 14-year clinical and radiographic follow-up in 28 young athletes. Acta Orthop. Scand. 67, 165–168.

    Article  CAS  Google Scholar 

  2. Johnson, L. L. (2001) Arthroscopic abrasion arthroplasty: a review. Clin. Orthop. Relat. Res. 391, 306–317.

    Article  Google Scholar 

  3. Hangody, L. (1997) Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. Knee Surg. Sports Traumatol. Arthrosc. 5, 262–267.

    Article  CAS  Google Scholar 

  4. Brittberg, M., Tallheden, T., Sjogren-Jansson, B., Lindahl, A., and Peterson, L. (2001) Autologous chondrocytes used for articular cartilage repair: an update. Clin. Orthop. Relat. Res. 391, 337–348.

    Article  Google Scholar 

  5. Huang, L., Nagapudi, K., Apkarian, R. P., and Chaikof, E. L. (2001) Engineered collagen-PEO nanofibers and fabrics. J. Biomater. Sci. Polym. Ed. 12(9), 979–993.

    Article  CAS  Google Scholar 

  6. Huang, Z. M., He, C. L., Yang, A., Zhang, Y., Han, X. J., Yin, J., and Wu, Q. (2006) Encapsulating drugs in biodegradable ultrafine fibers through co-axial electrospinning. J. Biomed. Mater. Res. A 77, 169–179.

    Google Scholar 

  7. Stitzel, J., Liu, J., Lee, S. J., Komura, M., Berry, J., Soker, S., Lim, G., Van Dyke, M., Czerw, R., Yoo, J. J., and Atala, A. (2006) Controlled fabrication of a biological vascular substitute. Biomaterials 27, 1088–1094.

    Article  CAS  Google Scholar 

  8. Matthews, J. A., Wnek, G. E., Simpson, D. G., and Bowlin, G. L. (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3, 232–238.

    Article  CAS  Google Scholar 

  9. Hutmacher, D. W., Schantz, T., Zein, I., Ng, K. W., Teoh, S. H., and Tan, K. C. (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res. 55, 203–216.

    Google Scholar 

  10. Hutmacher, D. W., Sittinger, M., and Risbud, M. V. (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 22, 354–362.

    Article  CAS  Google Scholar 

  11. Hoque, M. E., Hutmacher, D. W., Feng, W., Li, S., Huang, M. H., Vert, M., and Wong, Y. S. (2005) Fabrication using a rapid prototyping system and in vitro characterization of PEG-PCL-PLA scaffolds for tissue engineering. J. Biomater. Sci. Polym. Ed. 16, 1595–1610.

    Article  CAS  Google Scholar 

  12. Schantz, J. T., Brandwood, A., Hutmacher, D. W., Khor, H. L., and Bittner, K. (2005) Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin-polymer-ceramic scaffolds manufactured by fused deposition modeling. J. Mater. Sci. Mater. Med. 16, 807–819.

    Article  CAS  Google Scholar 

  13. Shao, X. X., Hutmacher, D. W., Ho, S. T., Goh, J. C., and Lee, E. H. (2006) Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials 27, 1071–1080.

    Article  CAS  Google Scholar 

  14. van Lieshout, M. I., Vaz, C. M., Rutten, M. C., Peters, G. W., and Baaijens, F. P. (2006) Electrospinning versus knitting: two scaffolds for tissue engineering of the aortic valve. J. Biomater. Sci. Polym. Ed. 17, 77–89.

    Article  Google Scholar 

  15. Rai, B., Teoh, S. H., Hutmacher, D. W., Cao, T., and Ho, K. H. (2005) Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2. Biomaterials 26, 3739–3748.

    Article  CAS  Google Scholar 

  16. Rai, B., Teoh, S. H., Ho, K. H., Hutmacher, D. W., Cao, T., Chen, F., and Yacob, K. (2004) The effect of rhBMP-2 on canine osteoblasts seeded onto 3D bioactive polycaprolactone scaffolds. Biomaterials 25, 5499–5506.

    Article  CAS  Google Scholar 

  17. Rohner, D., Hutmacher, D. W., Cheng, T. K., Oberholzer, M., and Hammer, B. (2003) In vivo efficacy of bone-marrow-coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig. J. Biomed. Mater. Res. B Appl. Biomater. 66, 574–580.

    Article  Google Scholar 

  18. Endres, M., Hutmacher, D. W., Salgado, A. J., Kaps, C., Ringe, J., Reis, R. L., Sittinger, M., Brandwood, A., and Schantz, J. T. (2003) Osteogenic induction of human bone marrow-derived mesenchymal progenitor cells in novel synthetic polymer-hydrogel matrices. Tissue Eng. 9, 689–702.

    Article  CAS  Google Scholar 

  19. Crump, S. (1992) Apparatus and method for creating three-dimensional objects. US Patent 5121329.

    Google Scholar 

  20. Reneker, D. H., Yarin, A. L., Fong, H., and Koombhongse, S. (2000) Bending instability of electrically liquid jets of polymer solutions in electrospinning. J. Appl. Physiol. 8, 4531–4547.

    Google Scholar 

  21. Li, D. and Xia, Y. (2004) Electrospinning of nanofibers: re-inventing the wheel? Adv. Mater. 16, 1151–1170.

    Article  CAS  Google Scholar 

  22. Deitzel, J. M., Kleinmeyer, J., Harris, D., and Beck Tan N. C. (2001) The effect of processing variables on the morphology of electrospun nanofiber and textiles. Polymer 42, 261–272.

    Article  CAS  Google Scholar 

  23. Theron, S. A., Zussman, E., and Yarin, A. L. (2004) Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45, 2017–2030.

    Article  CAS  Google Scholar 

  24. Zein, I., Hutmacher, D. W., Tan, K. C., and Teoh, S. H. (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23, 1169–1185.

    Article  CAS  Google Scholar 

  25. Theron, S. A., Zussman, E., and Yarin, A. L. (2001) Electrostatic field-assisted alignment of electrospun nanofibers. Nanotechnology 12, 384–390.

    Article  Google Scholar 

  26. Mo, X. and Weber, H.-J. (2004) Electrospinning P(LLA-CL) nanofiber: a tubular scaffold fabrication with circumferential alignment. Macromol. Symp. 217, 413–416.

    Article  CAS  Google Scholar 

  27. Fennessey, S. F. and Farris, J. (2004) Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer 45, 4217–4225.

    Article  CAS  Google Scholar 

  28. Dalton, P., Klee, D., and Möller, M. (2005) Electrospinning with dual collection rings. Polymer 46, 611–614.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Electron Microscopy Unit, National University of Singapore, for assistance with the microscopy work. Mr. Tan Kim Cheng (Temaesk Polytechnic, Singapore) for support in the FDM scaffold fabrication.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Schumann, D., Ekaputra, A.K., Lam, C.X., Hutmacher, D.W. (2007). Biomaterials/Scaffolds. In: Hauser, H., Fussenegger, M. (eds) Tissue Engineering. Methods in Molecular Medicine™, vol 140. Humana Press. https://doi.org/10.1007/978-1-59745-443-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-443-8_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-756-3

  • Online ISBN: 978-1-59745-443-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics