Skip to main content

Skeletal (“Mesenchymal”) Stem Cells for Tissue Engineering

  • Protocol
Tissue Engineering

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 140))

Summary

Skeletal stem cells (SSCs, commonly referred to as “mesenchymal” stem cells) are found in the bone marrow stromal cell (BMSC) fraction of post-natal bone marrow. They can be isolated in culture as adherent, clonogenic cells endowed with the ability to grow and differentiate into multiple lineages, all of which correspond to tissues that are integral parts of the skeleton. The multipotency of SSCs is probed by in vivo transplantation assays. The ability of SSCs to generate a cell strain competent to form significant amounts of bone in vivo has led to the formulation of preclinical models of bone repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Owen, M. and Friedenstein, A. J. (1988) Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found. Symp. 136, 42–60.

    CAS  Google Scholar 

  2. Bianco, P. and Robey, P. G. (2004) Skeletal stem cells, in Handbook of Adult and Fetal Stem Cells (Lanza, R. P., ed.), Academic Press, San Diego, CA, pp. 415–424.

    Google Scholar 

  3. Friedenstein, A. J., Chailakhyan, R. K., Latsinik, N. V., Panasyuk, A. F., and Keiliss-Borok, I. V. (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17, 331–340.

    Article  CAS  Google Scholar 

  4. Friedenstein, A. J., Deriglasova, U. F., Kulagina, N. N., Panasuk, A. F., Rudakowa, S. F., Luria, E. A., and Ruadkow, I. A. (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp. Hematol. 2, 183–92.

    Google Scholar 

  5. Friedenstein, A. J. (1976) Precursor cells of mechanocytes. Int. Rev. Cytol. 47, 327–359.

    Article  CAS  Google Scholar 

  6. Bianco, P., Riminucci, M., Kuznetsov, S., and Robey, P. G. (1999) Multipotential cells in the bone marrow stroma: regulation in the context of organ physiology. Crit. Rev. Eukaryot. Gene Expr. 9, 159–173.

    CAS  Google Scholar 

  7. Kuznetsov, S. A., Krebsbach, P. H., Satomura, K., Kerr, J., Riminucci, M., Benayahu, D., and Robey, P. G. (1997) Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J. Bone Miner. Res. 12, 1335–1347.

    Article  CAS  Google Scholar 

  8. Barry, F. P., Boynton, R. E., Haynesworth, S., Murphy, J. M., and Zaia, J. (1999) The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem. Biophys. Res. Commun. 265, 134–139.

    Article  CAS  Google Scholar 

  9. Deschaseaux, F. and Charbord, P. (2000) Human marrow stromal precursors are alpha 1 integrin subunit-positive. J. Cell Physiol. 184, 319–325.

    Article  CAS  Google Scholar 

  10. Filshie, R. J., Zannettino, A. C., Makrynikola, V., Gronthos, S., Henniker, A. J., Bendall, L. J., Gottlieb, D. J., Simmons, P. J., and Bradstock, K. F. (1998) MUC18, a member of the immunoglobulin superfamily, is expressed on bone marrow fibroblasts and a subset of hematological malignancies. Leukemia 12, 414–421.

    Article  CAS  Google Scholar 

  11. Gronthos, S., Zannettino, A. C., Graves, S. E., Ohta, S., Hay, S. J., and Simmons, P. J. (1999) Differential cell surface expression of the STRO-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. J. Bone Miner. Res. 14, 47–56.

    Article  CAS  Google Scholar 

  12. Stewart, K., Monk, P., Walsh, S., Jefferiss, C. M., Letchford, J., and Beresford, J. N. (2003) STRO-1, HOP-26 (CD63), CD49a and SB-10 (CD166) as markers of primitive human marrow stromal cells and their more differentiated progeny: a comparative investigation in vitro. Cell Tissue Res. 313, 281–290.

    Article  CAS  Google Scholar 

  13. Vogel, W., Grunebach, F., Messam, C. A., Kanz, L., Brugger, W., and Buhring, H. J. (2003) Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells. Haematologica 88, 126–133.

    Google Scholar 

  14. Zannettino, A. C., Harrison, K., Joyner, C. J., Triffitt, J. T., and Simmons, P. J. (2003) Molecular cloning of the cell surface antigen identified by the osteoprogenitor-specific monoclonal antibody, HOP-26. J. Cell Biochem. 89, 56–66.

    Article  CAS  Google Scholar 

  15. Satomura, K., Krebsbach, P., Bianco, P., and Robey, P. G. (2000) Osteogenic imprinting upstream of marrow stromal cell differentiation. J. Cell Biochem. 78, 391–403.

    Article  CAS  Google Scholar 

  16. Gimble, J. M., Robinson, C. E., Wu, X., and Kelly, K. A. (1996) The function of adipocytes in the bone marrow stroma: an update. Bone 19, 421–428.

    Article  CAS  Google Scholar 

  17. Kuznetsov, S. A., Mankani, M. H., Gronthos, S., Satomura, K., Bianco, P., and Robey, P. G. (2001) Circulating skeletal stem cells. J. Cell Biol. 153, 1133–1140.

    Article  CAS  Google Scholar 

  18. Bianco, P., Kuznetsov, S. A., Riminucci, M., and Robey, P. G. (in press) Post-natal skeletal stem cells, in Methods in Enzymology: Stem Cells, vol. 2 (Lanza, R. P., ed.), Elsevier/Academic Press, San Diego, CA.

    Google Scholar 

  19. Harrison, D. E. and Astle, C. M. (1982) Loss of stem cell repopulating ability upon transplantation. Effects of donor age, cell number, and transplantation procedure. J. Exp. Med. 156, 1767–1779.

    Article  CAS  Google Scholar 

  20. Robey, P. G. and Bianco, P. (2004) Stem cells in tissue engineering, in Handbook of Adult and Fetal Stem Cells (Lanza, R. P., ed.), Academic Press, San Diego, CA, pp. 785–792.

    Google Scholar 

  21. Krebsbach, P. H., Kuznetsov, S. A., Satomura, K., Emmons, R. V., Rowe, D. W., and Robey, P. G. (1997) Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation 63, 1059–1069.

    Article  CAS  Google Scholar 

  22. Krebsbach, P. H., Mankani, M. H., Satomura, K., Kuznetsov, S. A., and Robey, P. G. (1998) Repair of craniotomy defects using bone marrow stromal cells. Transplantation 66, 1272–1278.

    Article  CAS  Google Scholar 

  23. Kon, E., Muraglia, A., Corsi, A., Bianco, P., Marcacci, M., Martin, I., Boyde, A., Ruspantini, I., Chistolini, P., Rocca, M., Giardino, R., Cancedda, R., and Quarto, R. (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J. Biomed. Mater. Res. 49, 328–337.

    Article  CAS  Google Scholar 

  24. Marcacci, M., Kon, E., Zaffagnini, S., Giardino, R., Rocca, M., Corsi, A., Benvenuti, A., Bianco, P., Quarto, R., Martin, I., Muraglia, A., and Cancedda, R. (1999) Reconstruction of extensive long-bone defects in sheep using porous hydroxyapatite sponges. Calcif. Tissue Int. 64, 83–90.

    Article  CAS  Google Scholar 

  25. Mankani, M. H., Kuznetsov, S. A., Shannon, B., Nalla, R. K., Ritchie, R. O., Qin, Y., and Robey, P. G. (2006) Canine cranial reconstruction using autologous bone marrow stromal cells. Am. J. Pathol. 168, 542–550.

    Article  Google Scholar 

  26. Sittinger, M., Hutmacher, D. W., and Risbud, M. V. (2004) Current strategies for cell delivery in cartilage and bone regeneration. Curr. Opin. Biotechnol. 15, 411–418.

    Article  CAS  Google Scholar 

  27. Raghunath, J., Salacinski, H. J., Sales, K. M., Butler, P. E., and Seifalian, A. M. (2005) Advancing cartilage tissue engineering: the application of stem cell technology. Curr. Opin. Biotechnol. 16, 503–509.

    Article  CAS  Google Scholar 

  28. Kuznetsov, S. and Robey, P. G. (1996) Species differences in growth requirements for bone marrow stromal fibroblast colony formation in vitro. Calcif. Tissue Int. 59, 265–270.

    Article  CAS  Google Scholar 

  29. Kraemer, P. M., Ray, F. A., Brothman, A. R., Bartholdi, M. F., and Cram, L. S. (1986) Spontaneous immortalization rate of cultured Chinese hamster cells. J. Natl. Cancer Inst. 76, 703–709.

    CAS  Google Scholar 

  30. Johnstone, B., Hering, T. M., Caplan, A. I., Goldberg, V. M., and Yoo, J. U. (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238, 265–272.

    Article  CAS  Google Scholar 

  31. Muraglia, A., Corsi, A., Riminucci, M., Mastrogiacomo, M., Cancedda, R., Bianco, P., and Quarto, R. (2003) Formation of a chondro-osseous rudiment in micromass cultures of human bone-marrow stromal cells. J. Cell Sci. 116 (Pt. 14), 2949–2955.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Robey, P.G., Kuznetsov, S.A., Riminucci, M., Bianco, P. (2007). Skeletal (“Mesenchymal”) Stem Cells for Tissue Engineering. In: Hauser, H., Fussenegger, M. (eds) Tissue Engineering. Methods in Molecular Medicine™, vol 140. Humana Press. https://doi.org/10.1007/978-1-59745-443-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-443-8_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-756-3

  • Online ISBN: 978-1-59745-443-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics