Skip to main content

Measurements of Stathmin-Tubulin Interaction in Solution

  • Protocol
Microtubule Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 137))

Abstract

Stathmin is an important phosphorylation-controlled regulator of microtubule dynamics and plays a crucial role in cell division and cell proliferation. In its non-phosphorylated form, stathmin is the protein that interacts the most tightly with tubulin, in a 2:1 tubulin-stathmin (T2S) complex that does not participate in microtubule assembly. The importance of stathmin at different levels of phosphorylation in different steps of mitosis This article is a short overview of the different methods that have been or could be used to monitor the kinetic and thermodynamic parameters of tubulin-stathmin interaction and to evaluate the effects of phosphorylation. The author has tried to emphasize how hydrodynamic and spectroscopic methods measuring direct binding of stathmin to tubulin can be complemented by methods that make use of linked functions, measuring how the change in a functional property of tubulin upon binding stathmin provides information on binding parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wyman, J. (1984) Linkage graphs: a study in the thermodynamics of macromolecules. Q. Rev. Biophys. 17, 453–488.

    Article  CAS  PubMed  Google Scholar 

  2. Beretta, L., Dobransky, T., and Sobel, A. (1993) Multiple phosphorylation of stathmin. Identification of four sites phosphorylated in intact cells and in vitro by cyclic AMP-dependent protein kinase and p34cdc2. J. Biol. Chem. 268, 20,076–20,084.

    CAS  PubMed  Google Scholar 

  3. Brattsand, G., Marklund, U., Nylander, K., Roos, G., and Gullberg, M. (1994) Cell-cycle-regulated phosphorylation of oncoprotein 18 on Ser16, Ser25 and Ser38. Eur. J. Biochem. 220, 359–368.

    Article  CAS  PubMed  Google Scholar 

  4. Larsson, N., Melander, H., Marklund, U., Osterman, O., and Gullberg, M. (1995) G2/M transition requires multisite phosphorylation of oncoprotein 18 by two distinct protein kinase systems. J. Biol. Chem. 270, 14,175–14,183.

    Article  CAS  PubMed  Google Scholar 

  5. Marklund, U., Brattsand, G., Osterman, O., Ohlsson, P. I., and Gullberg, M. (1993) Multiple signal transduction pathways induce phosphorylation of serines 16, 25, and 38 of oncoprotein 18 in T lymphocytes. J. Biol. Chem. 268, 25,671–25,680.

    CAS  PubMed  Google Scholar 

  6. Marklund, U., Larsson, N., Gradin, H. M., Brattsand, G., and Gullberg, M. (1996) Oncoprotein 18 is a phosphorylation-responsive regulator of microtubule dynamics. EMBO J. 15, 5290–5298.

    CAS  PubMed  Google Scholar 

  7. Andersen, S. S., Ashford, A. J., Tournebize, R., et al. (1997) Mitotic chromatin regulates phosphorylation of Stathmin/Op18. Nature 389, 640–643.

    Article  CAS  PubMed  Google Scholar 

  8. Laird, A. D. and Shalloway, D. (1997) Oncoprotein signalling and mitosis. Cell Signal. 9, 249–255.

    Article  CAS  PubMed  Google Scholar 

  9. Moreno, F. J. and Avila, J. (1999) Phosphorylation of stathmin modulates its function as a microtubule depolymerizing factor. Mol. Cell. Biochem. 183, 201–209.

    Article  Google Scholar 

  10. Sobel, A. (1991) Stathmin: a relay phosphoprotein for multiple signal transduction? Trends Biochem. Sci. 16, 301–305.

    Article  CAS  PubMed  Google Scholar 

  11. Belmont, L. D. and Mitchison, T. J. (1996) Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 84, 623–631.

    Article  CAS  PubMed  Google Scholar 

  12. Rubin, C. I. and Atweh, G. F. (2004) The role of stathmin in the regulation of the cell cycle. J. Cell. Biochem. 93, 242–250.

    Article  CAS  PubMed  Google Scholar 

  13. Cassimeris, L. (2002) The oncoprotein 18/stathmin family of microtubule destabilizers. Curr. Opin. Cell Biol. 14, 18–24.

    Article  CAS  PubMed  Google Scholar 

  14. Curmi, P. A., Gavet, O., Charbaut, E., et al. (1999) Stathmin and its phosphoprotein family: general properties, biochemical and functional interaction with tubulin. Cell Struct. Funct. 24, 345–357.

    Article  CAS  PubMed  Google Scholar 

  15. Charbaut, E., Curmi, P. A., Ozon, S., Lachkar, S., Redeker, V., and Sobel, A. (2001) Stathmin family proteins display specific molecular and tubulin binding properties. J. Biol. Chem. 276, 16,146–16,154.

    Article  CAS  PubMed  Google Scholar 

  16. Jourdain, L., Curmi, P., Sobel, A., Pantaloni, D., and Carlier, M. F. (1997) Stathmin: a tubulin-sequestering protein which forms a ternary T2S complex with two tubulin molecules. Biochemistry 36, 10,817–10,821.

    Article  CAS  PubMed  Google Scholar 

  17. Steinmetz, M. O., Kammerer, R. A., Jahnke, W., Goldie, K. N., Lustig, A., and van Oostrum, J. (2000) Op18/stathmin caps a kinked protofilament-like tubulin tetramer. EMBO J. 19, 572–580.

    Article  CAS  PubMed  Google Scholar 

  18. Gigant, B., Curmi, P. A., Martin-Barbey, C., et al. (2000) The 4 A X-ray structure of a tubulin:stathmin-like domain complex. Cell 102, 809–816.

    Article  CAS  PubMed  Google Scholar 

  19. Krouglova, T., Amayed, P., Engelborghs, Y., and Carlier, M. F. (2003) Fluorescence correlation spectroscopy analysis of the dynamics of tubulin interaction with RB3, a stathmin family protein. FEBS Lett. 546, 365–368.

    Article  CAS  PubMed  Google Scholar 

  20. Beeckmans, S. (1999) Chromatographic methods to study protein-protein interactions. Methods 19, 278–305.

    Article  CAS  PubMed  Google Scholar 

  21. Amayed, P., Pantaloni, D., and Carlier, M. F. (2002) The effect of stathmin phosphorylation on microtubule assembly depends on tubulin critical concentration. J. Biol. Chem. 277, 22,718–22,724.

    Article  CAS  PubMed  Google Scholar 

  22. Yarbrough, L. R. and Fishback, J. L. (1985) Kinetics of interaction of 2-amino-6-mercapto-9-beta-ribofuranosylpurine 5′-triphosphate with bovine brain tubulin. Biochemistry 24, 1708–1714.

    Article  CAS  PubMed  Google Scholar 

  23. Amayed, P., Carlier, M. F., and Pantaloni, D. (2000) Stathmin slows down guanosine diphosphate dissociation from tubulin in a phosphorylation-controlled fashion. Biochemistry 39, 12,295–12,302.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Carlier, MF. (2007). Measurements of Stathmin-Tubulin Interaction in Solution. In: Zhou, J. (eds) Microtubule Protocols. Methods in Molecular Medicine™, vol 137. Humana Press. https://doi.org/10.1007/978-1-59745-442-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-442-1_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-642-9

  • Online ISBN: 978-1-59745-442-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics