Skip to main content

Studying the Structure of Microtubules by Electron Microscopy

  • Protocol
Microtubule Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 137))

Abstract

Although the structures of individual proteins and moderately sized complexes of proteins may be investigated by X-ray crystallography, the interaction between a long polymer, such as a microtubule, and other protein molecules, such as the motor domain of kinesin, need to be studied by electron microscopy. We have used electron cryo-microscopy and image analysis to study the structures of microtubules with and without bound kinesin motor domains and the changes that take place when the motor domains are in different nucleotide states. Among the microtubules that assemble from pure tubulin, we select a minor subpopulation that has perfect helical symmetry, which are the best for three-dimensional reconstruction. Gold labeling can be used to mark the positions of certain regions of protein sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amos, L. A. and Schlieper, D. (2005) Microtubules and MAPs. Adv. Protein Chem. 71, 257ā€“298.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Arnal, I. and Wade, R. H. (1998) Nucleotide-dependent conformations of the kinesin dimer interacting with microtubules. Structure 6, 33ā€“38.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Dias, D. P. and Milligan, R. A. (1999) Motor protein decoration of microtubules grown in high salt conditions reveals the presence of mixed lattices. J. Mol. Biol. 287, 287ā€“292.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Hirose, K., Lockhart, A., Cross, R. A., and Amos, L. A. (1995) Nucleotide-dependent angular change in kinesin motor domain bound to tubulin. Nature 376, 277ā€“279.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Hirose, K., Lockhart, A., Cross, R. A., and Amos, L. A. (1996) Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. Proc. Natl. Acad. Sci. USA 93, 9539ā€“9544.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Hirose, K., Cross, R. A., and Amos, L. A. (1998) Nucleotide-dependent structural changes in dimeric ncd molecules complexed to microtubules. J. Mol. Biol. 278, 389ā€“400.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Hirose, K., Lƶwe J., Alonso M., Cross R. A., and Amos L. A. (1999) Congruent docking of dimeric kinesin and ncd into 3D electron cryo-microscopy maps of microtubule-motor.ADP complexes. Mol. Biol. Cell 10, 2063ā€“2074.

    CASĀ  PubMedĀ  Google ScholarĀ 

  8. Hirose, K., Henningsen, U., Schliwa, M., et al. (2000) Structural comparison of dimeric Eg5, Neurospora kinesin (Nkin) and Ncd head-Nkin neck chimaera with conventional kinesin. EMBO J. 19, 5308ā€“5314.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Hoenger, A., Sablin, E. P., Vale, R. D., Fletterick, R. J., and Milligan, R. A. (1995) Three-dimensional structure of a tubulin-motor-protein complex. Nature 376, 271ā€“274.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Kikkawa, M., Ishikawa, T., Wakabayashi, T., and Hirokawa, N. (1995) 3-Dimensional structure of the kinesin head-microtubule complex. Nature 376, 274ā€“277.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Kikkawa, M., Okada Y., and Hirokawa N. (2000) 15 angstrom resolution model of the monomeric kinesin motor, KIF1A. Cell 100, 241ā€“252.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Kikkawa, M., Sablin, E. P., Okada, Y., Yajima, H., Fletterick, R. J., and Hirokawa, N. (2001) Switch-based mechanism of kinesin motors. Nature 411, 439ā€“445.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Rice, S., Lin, A. W., Safer, D., et al. (1999) A structural change in the kinesin motor protein that drives motility. Nature 402, 778ā€“784.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Skiniotis, G., Cochran, J. C., Muller, J., Mandelkow, E., Gilbert, S. P., and Hoenger, A. (2004) Modulation of kinesin binding by the C-termini of tubulin. EMBO J. 23, 989ā€“999.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Skiniotis, G., Surrey, T., Altmann, S., et al. (2003) Nucleotide-induced conformations in the neck region of dimeric kinesin. EMBO J. 22, 1518ā€“1528.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Song, Y. H., Marx, A., Muller, J., et al. (2001) Structure of a fast kinesin: implications for ATPase mechanism and interactions with microtubules. EMBO J. 20, 6213ā€“6125.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Sosa, H., Dias, D. P., Hoenger, A., et al. (1997) A model for the microtubule-Ncd motor protein complex obtained by cryo-electron microscopy and image analysis. Cell 90, 217ā€“224.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Wendt, T. G., Volkmann, N., Skiniotis, G., et al. (2002) Microscopic evidence for a minus-end-directed power stroke in the kinesin motor ncd. EMBO J. 21, 5969ā€“5978.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Kar, S., Fan, J., Smith, M. J., Goedert, M., and Amos, L. A. (2003) Repeat motifs of tau bind to the insides of microtubules in the absence of taxol. EMBO J. 22, 70ā€“77.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Moores, C. A., Perderiset, M., Francis, F., Chelly, J., Houdusse, A., and Milligan, R. A. (2004) Mechanism of microtubule stabilization by doublecortin. Mol. Cell 14, 833ā€“839.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Li, H., DeRosier, D., Nicholson, W., Nogales, E., and Downing, K. (2002) Microtubule structure at 8ƅ resolution. Structure 10, 1317ā€“1328.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Kikkawa, M. (2004) A new theory and algorithm for reconstructing helical structures with a seam. J. Mol Biol. 343, 943ā€“955.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Wang, H.-W., and Nogales, E. (2005) Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435, 911ā€“915.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Hyman, A. A., Salser, S., Drechsel, D. N., Unwin, N., and Mitchison, T. J. (1992) Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol. Biol. Cell 3, 1155ā€“1167.

    CASĀ  PubMedĀ  Google ScholarĀ 

  25. Castoldi, M., and Popov, A. V. (2003) Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr. Purif. 32, 83ā€“88.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Ray, S., Meyhƶfer, E., Milligan, R. A., and Howard, J. (1993) Kinesin follows the microtubuleā€™s protofilament axis. J. Cell Biol. 121, 1083ā€“1093.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Harrison, B. C., Marchese-Ragona, S. P., Gilbert, S. P., Cheng, N., Steven, A. C., and Johnson, K. A. (1993) Decoration of the microtubule surface by one kinesin head per tubulin heterodimer. Nature 362, 73ā€“75

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Lockhart, A., Crevel, I. M., and Cross, R. A. (1995) Kinesin and ncd bind through a single head to microtubules and compete for a shared MT binding site. J. Mol. Biol. 249, 763ā€“771.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Smith, M. J., Crowther, R. A., and Goedert, M. (2000) The natural osmolyte trimethylamine N-oxide (TMAO) restores the ability of mutant tau to promote microtubule assembly. FEBS Lett. 484, 265ā€“270.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Tseng, H. C. and Graves, D. J. (1998) Natural methylamine osmolytes, trimethylamine N-oxide and betaine, increase tau-induced polymerization of microtubules. Biochem. Biophys. Res. Commun. 250, 726ā€“730.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Fukami, A., and Adachi, K. (1965) A new method of preparation of a self-perforated micro plastic grid and its application. J. Electron Microsc. 14, 112ā€“118.

    CASĀ  Google ScholarĀ 

  32. Carragher, B., Fellmann, D., Guerra, F., et al. (2004) Rapid routine structure determination of macromolecular assemblies using electron microscopy: current progress and further challenges. J. Synchrotron Radiat. 11, 83ā€“85.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Meurer-Grob, P., Kasparian, J., and Wade, R. H. (2001) Microtubule structure at improved resolution. Biochemistry 40, 8000ā€“8008.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Song, H. and Endow, S. A. (1998) Decoupling of nucleotide-and microtubule-binding sites in a kinesin mutant. Nature 396, 587ā€“590.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. DeRosier, D. J. and Moore, P. B. (1970) Reconstruction of three dimensional images from electron micrographs of structures with helical symmetry. J. Mol. Biol. 52, 355ā€“369.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Crowther, R. A., Henderson, R., and Smith, J. M. (1996) MRC image processing programs. J. Struct. Biol. 116, 9ā€“16.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Yonekura, K., Toyoshima, C., Maki-Yonekura, S., and Namba, K. (2003) GUI programs for processing individual images in early stages of helical image reconstructionā€”for high-resolution structure analysis. J. Struct. Biol. 144, 184ā€“194.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  38. Toyoshima, C. and Unwin, N. (1990) Three-dimensional structure of the acetylcholine receptor by cryoelectron microscopy and helical image reconstruction. J. Cell Biol. 111, 2623ā€“2635.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Egelman, E. H. (1986) An algorithm for straightening images of curved filamentous structures. Ultramicroscopy 19, 367ā€“373.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Moody, M. F. (1990) Image analysis of electron micrographs, in Biophysical Electron Microscopy, (Hawkes, P. W. and ValdrĆØ, U., ed.), Academic Press, New York, pp. 145ā€“287.

    Google ScholarĀ 

  41. Wriggers, W. and Birnens, S. (2001) Using situs for flexible and rigid-body fitting of multiresolution single-molecule data. J. Struct. Biol. 133, 193ā€“202.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Roseman, A. M. (2000) Docking structures of domains into maps from cryo-electron microscopy using local correlation. Acta Cryst. D 56, 1332ā€“1340.

    ArticleĀ  CASĀ  Google ScholarĀ 

  43. Volkmann, N., and Hanein, D. (2003) Docking of atomic models into reconstructions from electron microscopy. Methods Enzymol. 374, 204ā€“225.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Nogales, E., Wolf, S., and Downing, K. H. (1998) Structure of the tubulin dimer by electron crystallography. Nature 391, 199ā€“203.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Yonekura, K., Maki-Yonekura, S., and Namba, K. (2003) Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424, 643ā€“650.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Wade, R. H., ChrĆ©tien, D., and Job, D. (1990) Characterization of microtubule protofilament numbers. How does the surface lattice accommodate? J. Mol. Biol. 212, 775ā€“786.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. ChrĆ©tien, D. and Wade, R. H. (1991) New data on the microtubule surface lattice. Biol. Cell 71, 161ā€“174.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  48. Mandelkow, E. M., Schultheiss, R., Rapp, R., Muller, M., and Mandelkow, E. (1986) On the surface lattice of microtubules: helix starts, protofilament number, seam, and handedness. J. Cell Biol. 102, 1067ā€“1073.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Kikkawa, M., Ishikawa, T., Nakata, T., Wakabayashi, T., and Hirokawa, N. (1994) Direct visualization of the microtubule lattice seam both in vitro and in vivo. J. Cell Biol. 127, 1965ā€“1971.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Song, Y. H. and Mandelkow, E. (1995) The anatomy of flagellar microtubules: polarity, seam, junctions, and lattice. J. Cell Biol. 128, 81ā€“94.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  51. Kull, F. J., Sablin, E. P., Lau, R., Fletterick, R. J., and Vale, R. D. (1996) Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550ā€“555.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. Kozielski, F., Sack, S., Marx, A., et al. (1997) The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 91, 985ā€“941.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  53. Gulick, A. M., Song, H., Endow, S. A., and Rayment, I. (1998) X-ray crystal structure of the yeast Kar3 motor domain complexed with Mg.ADP to 2.3A resolution. Biochemistry 37, 1769ā€“1776.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  54. Lƶwe, J., Li, H., Downing, K. H., and Nogales, E. (2001) Refined structure of tubulin at 3.5ƅ resolution. J. Mol. Biol. 313, 1045ā€“1057.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  55. Hirose, K., Akimaru, E., Akiba, T., Endow, S. A., and Amos, L. A. (2006) Large conformational changes in a kinesin motor catalysed by interaction with microtubules. Mol. Cell 23, 913ā€“923.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  56. Kikkawa, M. and Hirokawa, N. (2006) High-resolution cryo-EM maps show the nucleotide binding pocket of KIF1A in open and closed conformations. EMBO J. 25, 4187ā€“4194.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Amos, L.A., Hirose, K. (2007). Studying the Structure of Microtubules by Electron Microscopy. In: Zhou, J. (eds) Microtubule Protocols. Methods in Molecular Medicineā„¢, vol 137. Humana Press. https://doi.org/10.1007/978-1-59745-442-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-442-1_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-642-9

  • Online ISBN: 978-1-59745-442-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics