Skip to main content

Screening for Inhibitors of Microtubule-Associated Motor Proteins

  • Protocol
Microtubule Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 137))

Abstract

The mitotic spindle is an important target for cancer chemotherapy. The main protein target for drugs in clinical use is tubulin, the building block of microtubules. In recent years, other proteins of the mitotic spindle have been identified as potential targets for the development of more specific drugs with the hope that these will have fewer side effects than known antimitotics (taxanes, vinca alkaloids). The human genome contains more than 40 members of the kinesin superfamily, with at least 12 of these involved in mitosis and cytokinesis. HsEg5 (also called KSP, kinesin spindle protein), a member of the kinesin-5 family, involved in the formation of the bipolar spindle, is a very promising target for cancer chemotherapy with specific inhibitors in Phase I and II clinical trails. Several successful approaches exist today to screen Eg5 for inhibitors, including phenotype-based assays and simple in vitro assays that explore the intrinsic enzymatic ATPase activity of Eg5. Here, we describe a robust and straightforward in vitro method to rapidly screen Eg5 for inhibitors. The assay can easily be adapted to other mitotic kinesins that may be identified in the future as potential drug targets, or simply to obtain specific kinesin inhibitors for use in “chemical genetics” to study the function of this important class of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamel, E. (1996) Antimitotic natural products and their interactions with tubulin. Med. Res. Revs. 16, 207–231.

    Article  CAS  Google Scholar 

  2. Kreis, T. and Vale, R. (1999) Guidebook to the Cytoskeletal and Motor Proteins. Oxford University Press, New York.

    Google Scholar 

  3. Wood, K. W., Cornell, W. D., and Jackson, J. R. (2001) Past and future of the mitotic spindle as an oncology target. Curr. Opin. Pharmacol. 1, 370–377.

    Article  CAS  PubMed  Google Scholar 

  4. Miyamoto, D. T., Perlman, Z. E., Mitchison, T. J., and Shirasu-Hiza, M. (2003) Dynamics of the mitotic spindle: potential therapeutic targets. Prog. Cell Cycle Res. 5, 349–360.

    PubMed  Google Scholar 

  5. Mayer, T. U. (2003) Chemical genetics: tailoring tools for cell biology. Trends Cell Biol. 13, 270–277.

    Article  CAS  PubMed  Google Scholar 

  6. Blangy, A., Lane, H. A., d’Herin, P., Harper, M., Kress, M., and Nigg, E. A. (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83, 1159–1169.

    Article  CAS  PubMed  Google Scholar 

  7. Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L., and Mitchison, T. J. (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971–974.

    Article  CAS  PubMed  Google Scholar 

  8. Nakazawa, J., Yajima, J., Usui, T., et al. (2003) A novel action of terpendole e on the motor activity of mitotic Kinesin eg5. Chem. Biol. 10, 131–137.

    Article  CAS  PubMed  Google Scholar 

  9. DeBonis, S., Skoufias, D. A., Robin, G., et al. (2004) In vitro screening for inhibitors of the human mitotic kinesin, Eg5, with antimitotic and antitumor activity. Mol. Cancer Ther. 3, 1079–1090.

    CAS  PubMed  Google Scholar 

  10. Cox, C. D., Breslin, M. J., Mariano, B. J., et al. (2005) Kinesin spindle protein (KSP) inhibitors. Part 1: The discovery of 3,5-diaryl-4,5-dihydropyrazoles as potent and selective inhibitors of the mitotic kinesin KSP. Bioorg. Med. Chem. Lett. 15, 2041–2045.

    Article  CAS  PubMed  Google Scholar 

  11. Hotha, S., Yarrow, J. C., Yang, J. G., et al. (2003) A potent small-molecule probe for the dynamics of cell division. Angew. Chem. Int. Ed. Engl. 42, 2379–2385.

    Article  CAS  PubMed  Google Scholar 

  12. Sakowicz, R., Finer, J. T., Beraud, C., et al. (2004) Antitumor activity of a kinesin inhibitor. Cancer Res. 64, 3276–3280.

    Article  CAS  PubMed  Google Scholar 

  13. Sakowicz, R., Berdelis, M. S., Ray, K., et al. (1998) A marine natural product inhibitor of kinesin motors. Science 280, 292–295.

    Article  CAS  PubMed  Google Scholar 

  14. Hopkins, S. C., Vale, R. D., and Kuntz, I. D. (2000) Inhibitors of kinesin activity from structure-based computer screening. Biochemistry 39, 2805–2814.

    Article  CAS  PubMed  Google Scholar 

  15. Yen, T. J., Li, G., Schaar, B. T., Szilak, I., and Cleveland, D.W. (1992) CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature 359, 536–539.

    Article  CAS  PubMed  Google Scholar 

  16. Nislow, C., Lombillo, V. A., Kuriyama, R., and McIntosh, J. R. (1992) A plusend-directed motor enzyme that moves antiparallel microtubules in vitro localizes to the interzone of mitotic spindles. Nature 359, 543–547.

    Article  CAS  PubMed  Google Scholar 

  17. Hackney, D. D. and Jiang, W. (2001) Assays for kinesin microtubule-stimulated ATPase actvity. Methods Mol. Biol. 164, 65–71.

    CAS  PubMed  Google Scholar 

  18. Funk, C. J., Davis, A. S., Hopkins, J. A., and Middleton, K. M. (2004) Development of high-throughput screens for discovery of kinesin adenosine triphosphate modulators. Anal. Biochem. 329, 68–76.

    Article  CAS  PubMed  Google Scholar 

  19. Andreassen, P. R., Skoufias D. A., and Margolis, R. L. (2004) Analysis of the spindle-assembly checkpoint in HeLa cells. Methods Mol. Biol. 281, 213–225.

    CAS  PubMed  Google Scholar 

  20. Webb, M. R. (1992) A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc. Natl. Acad. Sci. USA 89, 4884–4887.

    Article  CAS  PubMed  Google Scholar 

  21. DeBonis, S., Simorre, J. P., Crevel, I., et al. (2003) Interaction of the mitotic inhibitor monastrol with human kinesin Eg5. Biochemistry 42, 338–349.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, J. H., Chung, T. D. Y., and Oldenburgh, K. R. (1999). A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screening 4, 67–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Kozielski, F., DeBonis, S., Skoufias, D.A. (2007). Screening for Inhibitors of Microtubule-Associated Motor Proteins. In: Zhou, J. (eds) Microtubule Protocols. Methods in Molecular Medicine™, vol 137. Humana Press. https://doi.org/10.1007/978-1-59745-442-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-442-1_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-642-9

  • Online ISBN: 978-1-59745-442-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics