Skip to main content

Pharmacogenomics in HIV Disease

  • Protocol
  • 1166 Accesses

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Pharmacogenetics holds promise in HIV treatment because of the complexity and potential toxicity of multidrug therapies that are prescribed for long periods. However, there has been limited success with the current approach, in which one or few candidate genes are examined for a limited number of allelic variants. A change in paradigm emerges from the availability of the HapMap, the wealth of data on less common genetic polymorphisms, and new genotyping technology. This chapter presents a comprehensive review of the existing literature on pharmacogenetic determinants of antiretroviral drug exposure and of drug toxic-ity, as well as on genetic markers associated with the rate of disease progression. In addition, this chapter discusses current opportunities in the clinical arena, as well as issues on genetics in HIV drug development. It is expected that larger-scale comprehensive genome approaches will profoundly change the landscape of knowledge in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fellay J, Boubaker K, Ledergerber B et al. Prevalence of adverse events associated with potent antiretroviral treatment: Swiss HIV Cohort Study. Lancet 2001;358:1322–7.

    CAS  PubMed  Google Scholar 

  2. Rotger M, Csajka C, Telenti A. Genetic, ethnic, and gender differences in the pharmacokinet-ics of antiretroviral agents. Curr HIV /AIDS Rep 2006;3:118–25.

    PubMed  Google Scholar 

  3. Syvanen AC. Toward genome-wide SNP genotyping. Nat Genet 2005;37 Suppl:S5–10.

    PubMed  Google Scholar 

  4. Telenti A, Goldstein DB. Genomics meets HIV. Nat Rev Microbiol 2006;4:9–18.

    Google Scholar 

  5. Roses AD. Pharmacogenetics and drug development: the path to safer and more effective drugs. Nat Rev Genet 2004;5:645–56.

    CAS  PubMed  Google Scholar 

  6. Telenti A, Egger M. Identifying safety concerns from genetic data: lessons from the development of CCR5 inhibitors. Antivir Ther 2007;12:147–8.

    CAS  PubMed  Google Scholar 

  7. Este JA, Telenti A. HIV entry inhibitors. Lancet 2007;370:81–8.

    CAS  PubMed  Google Scholar 

  8. Eagling VA, Back DJ, Barry MG. Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br J Clin Pharmacol 1997;44:190–4.

    CAS  PubMed  Google Scholar 

  9. Barry M, Mulcahy F, Merry C, Gibbons S, Back D. Pharmacokinetics and potential interactions amongst antiretroviral agents used to treat patients with HIV infection. Clin Pharmacokinet 1999;36:289–304.

    CAS  PubMed  Google Scholar 

  10. Kim RB. Drug transporters in HIV Therapy. Top HIV Med 2003;11:136–9.

    PubMed  Google Scholar 

  11. Anderson PL, Kakuda TN, Lichtenstein KA. The cellular pharmacology of nucleoside- and nucleotide-analogue reverse-transcriptase inhibitors and its relationship to clinical toxicities. Clin Infect Dis 2004;38:743–53.

    CAS  PubMed  Google Scholar 

  12. Kimchi-Sarfaty C, Oh JM, Kim IW et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 2007;315:525–8.

    CAS  PubMed  Google Scholar 

  13. Komar AA. Genetics. SNPs, silent but not invisible. Science 2007;315:466–7.

    CAS  PubMed  Google Scholar 

  14. Ahmadi KR, Weale ME, Xue ZY et al. A single-nucleotide polymorphism tagging set for human drug metabolism and transport. Nat Genet 2005;37:84–9.

    CAS  PubMed  Google Scholar 

  15. lubomirov r, csajka c, telenti a. an adme pathway approach for pharmacogenetic studies of anti-hiv therapy. pharmacogenomics 2007;8:623–33.

    CAS  PubMed  Google Scholar 

  16. Yuan HY, Chiou JJ, Tseng WH et al. FASTSNP: an always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res 2006;34:W635–W641.

    CAS  PubMed  Google Scholar 

  17. Hemminger BM, Saelim B, Sullivan PF. TAMAL: an integrated approach to choosing SNPs for genetic studies of human complex traits. Bioinformatics 2006;22:626–7.

    CAS  PubMed  Google Scholar 

  18. Zanni MP, von Greyerz S, Schnyder B et al. HLA-restricted, processing- and metabolism-independent pathway of drug recognition by human alpha beta T lymphocytes. J Clin Invest 1998;102:1591–8.

    CAS  PubMed  Google Scholar 

  19. Schnyder B, Burkhart C, Schnyder-Frutig K et al. Recognition of sulfamethoxazole and its reactive metabolites by drug-specific CD4+ T cells from allergic individuals. J Immunol 2000;164:6647–54.

    CAS  PubMed  Google Scholar 

  20. Park BK, Naisbitt DJ, Gordon SF, Kitteringham NR, Pirmohamed ?. Metabolic activation in drug allergies. Toxicology 2001;158:11–23.

    CAS  PubMed  Google Scholar 

  21. Hewitt RG. Abacavir hypersensitivity reaction. Clin Infect Dis 2002;34:1137–42.

    CAS  PubMed  Google Scholar 

  22. Peyrieere H, Nicolas J, Siffert ?, Demoly P, Hillaire-Buys D, Reynes J. Hypersensitivity related to abacavir in two members of a family. Ann Pharmacother 2001;35:1291–2.

    CAS  PubMed  Google Scholar 

  23. Mallal S, Nolan D, Witt C et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 2002;359:727–32.

    CAS  PubMed  Google Scholar 

  24. Hetherington S, Hughes AR, Mosteller ? et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 2002;359:1121–2.

    CAS  PubMed  Google Scholar 

  25. Nolan D, Gaudieri S, Mallal S. Pharmacogenetics: a practical role in predicting antiretroviral drug toxicity? J HIV Ther 2003;8:36–41.

    CAS  PubMed  Google Scholar 

  26. Hughes DA, Vilar FJ, Ward CC, Alfirevic A, Park BK, Pirmohamed ?. Cost-effectiveness analysis of HLA B*5701 genotyping in preventing abacavir hypersensitivity. Pharmacogenetics 2004;14:335–42.

    PubMed  Google Scholar 

  27. Hughes AR, Mosteller ?, Bansal AT et al. Association of genetic variations in HLA-B region with hypersensitivity to abacavir in some, but not all, populations. Pharmacogenomics 2004;5:203–11.

    CAS  PubMed  Google Scholar 

  28. Lucas A, Nolan D, Mallal S. HLA-B*5701 screening for susceptibility to abacavir hypersen-sitivity. J Antimicrob Chemother 2007;59:591–3.

    CAS  PubMed  Google Scholar 

  29. Stern JO, Robinson PA, Love J, Lanes S, Imperiale MS, Mayers DL. A comprehensive hepatic safety analysis of nevirapine in different populations of HIV infected patients. J Acquir Immune Defic Syndr 2003;34 Suppl 1:S21–S33.

    CAS  PubMed  Google Scholar 

  30. Patel SM, Johnson S, Belknap SM, Chan J, Sha BE, Bennett C. Serious adverse cutaneous and hepatic toxicities associated with nevirapine use by non-HIV-infected individuals. J Acquir Immune Defic Syndr 2004;35:120–5.

    CAS  PubMed  Google Scholar 

  31. Martin AM, Nolan D, James I et al. Predisposition to nevirapine hypersensitivity associated with HLA-DRB1*0101 and abrogated by low CD4 T-cell counts. AIDS 2005;19:97–9.

    CAS  PubMed  Google Scholar 

  32. Behrens G, Schmidt HH, Stoll M, Schmidt RE. ApoE genotype and protease-inhibitor-associated hyperlipidaemia. Lancet 1999;354:76.

    CAS  PubMed  Google Scholar 

  33. Fauvel J, Bonnet E, Ruidavets JB et al. An interaction between apo C-III variants and protease inhibitors contributes to high triglyceride/low HDL levels in treated HIV patients. AIDS 2001;15:2397–406.

    CAS  PubMed  Google Scholar 

  34. Tarr PE, Taffe P, Bleiber G et al. Modeling the influence of APOC3, APOE, and TNF polymorphisms on the risk of antiretroviral therapy-associated lipid disorders. J Infect Dis 2005;191:1419–26.

    CAS  PubMed  Google Scholar 

  35. Arnedo M, Taffé P, Sahli R et al. Evaluation of the contribution of 20 variants of 13 genes to dyslipidemia associated with antiretroviral therapy. Pharmacogenetics Genomics 2007; 17:755–64.

    CAS  Google Scholar 

  36. Nolan D, Moore C, Castley A et al. Tumour necrosis factor-alpha gene -238G/A promoter polymorphism associated with a more rapid onset of lipodystrophy. AIDS 2003;17:121–3.

    PubMed  Google Scholar 

  37. Maher B, Alfirevic A, Vilar FJ, Wilkins EG, Park BK, Pirmohamed ?. TNF-alpha promoter region gene polymorphisms in HIV-positive patients with lipodystrophy. AIDS 2002; 16:2013–8.

    CAS  PubMed  Google Scholar 

  38. Wallace KB, Starkov AA. Mitochondrial targets of drug toxicity. Annu Rev Pharmacol Toxicol 2000;40:353–88.

    CAS  PubMed  Google Scholar 

  39. Luzhansky JZ, Pierce AB, Hoy JF, Hall AJ. Leber's hereditary optic neuropathy in the setting of nucleoside analogue toxicity. AIDS 2001;15:1588–9.

    CAS  PubMed  Google Scholar 

  40. Shaikh S, Ta C, Basham AA, Mansour S. Leber hereditary optic neuropathy associated with antiretroviral therapy for human immunodeficiency virus infection. Am J Ophthalmol 2001;131:143–5.

    CAS  PubMed  Google Scholar 

  41. Warner JE, Ries KM. Optic neuropathy in a patient with AIDS. J Neuroophthalmol 2001;21:92–4.

    CAS  PubMed  Google Scholar 

  42. Mackey DA, Fingert JH, Luzhansky JZ et al. Leber's hereditary optic neuropathy triggered by antiretroviral therapy for human immunodeficiency virus. Eye 2003;17:312–7.

    CAS  PubMed  Google Scholar 

  43. Hulgan T, Haas DW, Haines JL et al. Mitochondrial haplogroups and peripheral neuropathy during antiretroviral therapy: an adult AIDS clinical trials group study. AIDS 2005;19: 1341–9.

    PubMed  Google Scholar 

  44. Trifunovic A, Wredenberg A, Falkenberg M et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004;429:417–23.

    CAS  PubMed  Google Scholar 

  45. Boffito M, Kurowski M, Kruse G et al. Atazanavir enhances saquinavir hard-gel concentrations in a ritonavir-boosted once-daily regimen. AIDS 2004;18:1291–7.

    CAS  PubMed  Google Scholar 

  46. Hammer SM, Squires KE, Hughes MD et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical Trials Group 320 Study Team. N Engl J Med 1997;337:725–33.

    CAS  PubMed  Google Scholar 

  47. Briz O, Serrano MA, MacIas RI, Gonzalez-Gallego J, Marin JJ. Role of organic anion-transporting polypeptides, OATP-A, OATP-C and OATP-8, in the human placenta-maternal liver tandem excretory pathway for foetal bilirubin. Biochem J 2003;371:897–905.

    CAS  PubMed  Google Scholar 

  48. Cui Y, Konig J, Leier I, Buchholz U, Keppler D. Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J Biol Chem 2001;276:9626–30.

    CAS  PubMed  Google Scholar 

  49. Konig J, Cui Y, Nies AT, Keppler D. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol 2000;278:G156–G164.

    CAS  PubMed  Google Scholar 

  50. Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 2000;40:581–616.

    CAS  PubMed  Google Scholar 

  51. Bosma PJ, Chowdhury JR, Bakker C et al. The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert's syndrome. N Engl J Med 1995;333:1171–5.

    CAS  PubMed  Google Scholar 

  52. Monaghan G, Ryan M, Seddon R, Hume R, Burchell B. Genetic variation in bilirubin UPD-glucuronosyltransferase gene promoter and Gilbert's syndrome. Lancet 1996;347:578–81.

    CAS  PubMed  Google Scholar 

  53. Zucker SD, Qin X, Rouster SD et al. Mechanism of indinavir-induced hyperbilirubinemia. Proc Natl Acad Sci U S A 2001;98:12671–6.

    CAS  PubMed  Google Scholar 

  54. Rotger M, Taffe P, Bleiber G et al. Gilbert syndrome and the development of antiretroviral therapy-associated hyperbilirubinemia. J Infect Dis 2005;192:1381–6.

    CAS  PubMed  Google Scholar 

  55. Kameyama Y, Yamashita K, Kobayashi K, Hosokawa M, Chiba K. Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics 2005;15:513–22.

    CAS  PubMed  Google Scholar 

  56. Nozawa T, Minami H, Sugiura S, Tsuji A, Tamai I. Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide polymorphisms. Drug Metab Dispos 2005;33:434–9.

    CAS  PubMed  Google Scholar 

  57. Tirona RG, Leake BF, Merino G, Kim RB. Polymorphisms in OATP-C: identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J Biol Chem 2001;276:35669–75.

    CAS  PubMed  Google Scholar 

  58. Mwinyi J, Johne A, Bauer S, Roots I, Gerloff T. Evidence for inverse effects of OATP-C (SLC21A6) 5 and 1b haplotypes on pravastatin kinetics. Clin Pharmacol Ther 2004; 75:415–21.

    CAS  PubMed  Google Scholar 

  59. Niemi M, Schaeffeler E, Lang T et al. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypep-tide-C (OATP-C, SLCO1B1). Pharmacogenetics 2004;14:429–40.

    CAS  PubMed  Google Scholar 

  60. Niemi M, Backman JT, Kajosaari LI et al. Polymorphic organic anion transporting polypep-tide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin Pharmacol Ther 2005; 77:468–78.

    CAS  PubMed  Google Scholar 

  61. Niemi M, Kivisto KT, Hofmann U, Schwab M, Eichelbaum M, Fromm MF. Fexofenadine pharmacokinetics are associated with a polymorphism of the SLCO1B1 gene (encoding OATP1B1). Br J Clin Pharmacol 2005;59:602–4.

    CAS  PubMed  Google Scholar 

  62. Nishizato Y, Ieiri I, Suzuki H et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther 2003;73:554–65.

    CAS  PubMed  Google Scholar 

  63. Rotger, M., Taffe, P., Bleiber, G., Günthard, H. F., Furrer, H., Vernazza, P., Drechsler, H., Bernasconi, E., Rickenbach, M., and Telenti, A. Contribution of genetic polymorphisms in UGT1A1 and SCLO1B1 to the development of antiretroviral therapy assocîated hyperbiliru-binemia. 45th International Conference on Antimicrobial Agents and Chemotherapy, Washington. 2005.

    Google Scholar 

  64. Haas DW, Ribaudo HJ, Kim RB et al. Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study. AIDS 2004;18:2391–400.

    CAS  PubMed  Google Scholar 

  65. Adkins JC, Noble S. Efavirenz. Drugs 1998;56:1055–64.

    CAS  PubMed  Google Scholar 

  66. Lochet P, Peyriere H, Lotthe A, Mauboussin JM, Delmas B, Reynes J. Long-term assessment of neuropsychiatric adverse reactions associated with efavirenz. HIV Med 2003;4:62–6.

    CAS  PubMed  Google Scholar 

  67. Dassopoulos T, Ehrenpreis ED. Acute pancreatitis in human immunodeficiency virus-infected patients: a review. Am J Med 1999;107:78–84.

    CAS  PubMed  Google Scholar 

  68. Sharer N, Schwarz M, Malone G et al. Mutations of the cystic fibrosis gene in patients with chronic pancreatitis. N Engl J Med 1998;339:645–52.

    CAS  PubMed  Google Scholar 

  69. Cohn JA, Friedman KJ, Noone PG, Knowles MR, Silverman LM, Jowell PS. Relation between mutations of the cystic fibrosis gene and idiopathic pancreatitis. N Engl J Med 1998;339:653–8.

    CAS  PubMed  Google Scholar 

  70. Pfutzer RH, Barmada MM, Brunskill AP et al. SPINK1/PSTI polymorphisms act as disease modifiers in familial and idiopathic chronic pancreatitis. Gastroenterology 2000;119:615–23.

    CAS  PubMed  Google Scholar 

  71. Frossard JL, Morris MA, Wonkam A et al. The role of CFTR and SPINK-1 mutations in pancreatic disorders in HIV-positive patients: a case control study. AIDS 2004;18:1521–7.

    PubMed  Google Scholar 

  72. Telenti A, Bleiber G. Host genetics of HIV-1 susceptibility. Future Virol 2006;1:55–70.

    CAS  Google Scholar 

  73. Carrington M, Nelson G, O'Brien SJ. Considering genetic profiles in functional studies of immune responsiveness to HIV-1. Immunol Lett 2001;79:131–40.

    CAS  PubMed  Google Scholar 

  74. Carrington M, O'Brien SJ. The influence of HLA genotype on AIDS. Annu Rev Med 2003;54:535–51.

    CAS  PubMed  Google Scholar 

  75. Martin MP, Gao X, Lee JH et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 2002;31:429–34.

    CAS  PubMed  Google Scholar 

  76. Dean M, Carrington M, Winkler C et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 1996;273:1856–62.

    CAS  PubMed  Google Scholar 

  77. Samson M, Libert F, Doranz BJ et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996;382:722–5.

    CAS  PubMed  Google Scholar 

  78. Huang Y, Paxton WA, Wolinsky SM et al. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 1996;2:1240–3.

    CAS  PubMed  Google Scholar 

  79. Gonzalez E, Bamshad M, Sato N et al. Race-specific HIV-1 disease-modifying effects associated with CCR5 haplotypes. Proc Natl Acad Sci U S A 1999;96:12004–9.

    CAS  PubMed  Google Scholar 

  80. Mummidi S, Ahuja SS, Gonzalez E et al. Genealogy of the CCR5 locus and chemokine system gene variants associated with altered rates of HIV-1 disease progression. Nat Med 1998;4:786–93.

    CAS  PubMed  Google Scholar 

  81. Smith MW, Dean M, Carrington M et al. Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study. Science 1997;277:959–65.

    CAS  PubMed  Google Scholar 

  82. Gonzalez E, Kulkarni H, Bolivar H et al. The Influence of CCL3L1 Gene-Containing Segmental Duplications on HIV-1/AIDS Susceptibility. Science 2005;307:1434–40.

    CAS  PubMed  Google Scholar 

  83. Bleiber G, May ?, Martinez R et al. Use of a combined ex vivo/in vivo population approach for screening of human genes involved in the human immunodeficiency virus type 1 life cycle for variants influencing disease progression. J Virol 2005;79:12674–80.

    CAS  PubMed  Google Scholar 

  84. Telenti A. Host polymorphism in post-entry steps of the HIV-1 life cycle and other genetic variants influencing HIV-1 pathogenesis. Curr Opin HIV/AIDS 2006;1:232–40.

    Google Scholar 

  85. Bashirova A, Bleiber G, Hutcheson H et al. Consistent effects of variation in the tumor susceptibility gene 101 on multiple outcomes to HIV-1 exposure. J Virol 2006;80:6757–63.

    CAS  PubMed  Google Scholar 

  86. O'Brien SJ, Nelson GW. Human genes that limit AIDS. Nat Genet 2004;36:565–74.

    PubMed  Google Scholar 

  87. Nelson GW, O'Brien SJ. Using mutual information to measure the impact of multiple genetic factors on AIDS. J Acquir Immune Defic Syndr 2006;42:347–54.

    PubMed  Google Scholar 

  88. Evans DM, Cardon LR. Genome-wide association: a promising start to a long race. Trends Genet 2006;22:350–4.

    CAS  PubMed  Google Scholar 

  89. Haas DW, Wilkinson GR, Kuritzkes DR et al. A multi-investigator/institutional DNA bank for AIDS-related human genetic studies: AACTG Protocol A5128. HIV Clin Trials 2003;4:287–300.

    PubMed  Google Scholar 

  90. Chen DT, Rosenstein DL, Muthappan P et al. Research with stored biological samples: what do research participants want? Arch Intern Med 2005;165:652–5.

    PubMed  Google Scholar 

  91. Lederman MM, Penn-Nicholson A, Cho ?, Mosier D. Biology of CCR5 and its role in HIV infection and treatment. JAMA 2006;296:815–26.

    CAS  PubMed  Google Scholar 

  92. Khan IA, Thomas SY, Moretto MM et al. CCR5 is essential for NK cell trafficking and host survival following Toxoplasma gondii infection. PLoS Pathog 2006;2:e49.

    PubMed  Google Scholar 

  93. Glass WG, Lim JK, Cholera R, Pletnev AG, Gao JL, Murphy PM. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med 2005;202:1087–98.

    CAS  PubMed  Google Scholar 

  94. Rahbar R, Murooka TT, Hinek AA et al. Vaccinia virus activation of CCR5 invokes tyrosine phosphorylation signaling events that support virus replication. J Virol 2006;80:7245–59.

    CAS  PubMed  Google Scholar 

  95. Floto RA, MacAry PA, Boname JM et al. Dendritic cell stimulation by mycobacterial Hsp70 is mediated through CCR5. Science 2006;314:454–8.

    CAS  PubMed  Google Scholar 

  96. Ank N, Petersen K, Malmgaard L, Mogensen SC, Paludan SR. Age-dependent role for CCR5 in antiviral host defense against herpes simplex virus type 2. J Virol 2005;79:9831–41.

    CAS  PubMed  Google Scholar 

  97. Machado FS, Koyama NS, Carregaro V et al. CCR5 plays a critical role in the development of myocarditis and host protection in mice infected with Trypanosoma cruzi. J Infect Dis 2005;191:627–36.

    CAS  PubMed  Google Scholar 

  98. Belnoue E, Kayibanda M, Deschemin JC et al. CCR5 deficiency decreases susceptibility to experimental cerebral malaria. Blood 2003;101:4253–9.

    CAS  PubMed  Google Scholar 

  99. Gardam MA, Keystone EC, Menzies R et al. Anti-tumour necrosis factor agents and tuberculosis risk: mechanisms of action and clinical management. Lancet Infect Dis 2003;3:148–55.

    CAS  PubMed  Google Scholar 

  100. Wheeler J, McHale M, Jackson V, Penny ?. Assessing theoretical risk and benefit suggested by genetic association studies of CCR5: experience in a drug development programme for maraviroc. Antivir Ther 2007;12:233–45.

    CAS  PubMed  Google Scholar 

  101. Glass WG, McDermott DH, Lim JK et al. CCR5 deficiency increases risk of symptomatic West Nile virus infection. J Exp Med 2006;203:35–40.

    CAS  PubMed  Google Scholar 

  102. Thio CL, Astemborski J, Bashirova A et al. Genetic protection against HBV conferred by CCR5{Delta}32: evidence that CCR5 contributes to viral persistence. J Virol 2006.

    Google Scholar 

  103. Fellay J, Shianna KV, Ge D et al. Identification of major determinants of the host control of HIV-1 through a whole genome association study. Science 2007;317:944–7.

    CAS  PubMed  Google Scholar 

  104. Sladek R, Rocheleau G, Rung J et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007;445:881–5.

    CAS  PubMed  Google Scholar 

  105. Duerr RH, Taylor KD, Brant SR et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006;314:1461–3.

    CAS  PubMed  Google Scholar 

  106. Mullighan CG, Goorha S, Radtke I et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007;446:758–64.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Telenti, A. (2008). Pharmacogenomics in HIV Disease. In: Cohen, N. (eds) Pharmacogenomics and Personalized Medicine. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1007/978-1-59745-439-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-439-1_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-04-6

  • Online ISBN: 978-1-59745-439-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics