Skip to main content

Heterologous and Cell-Free Protein Expression Systems

  • Protocol
  • First Online:
Plant Genomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 513))

Summary

In recognition of the fact that a relatively small percentage of ‘named’ genes in databases have any experimental proof for their annotation, attention is shifting towards the more accurate assignment of functions to individual genes in a genome. The central objective will be to reduce our reliance on nucleotide or amino acid sequence similarities as a means to define the functions of genes and to annotate genome sequences. There are many unsolved technical difficulties associated with the purification of specific proteins from extracts of biological material, especially where the protein is present in low abundance, has multiple isoforms or is found in multiple post-translationally modified forms. The relative ease with which cDNAs can be cloned has led to the development of methods through which cDNAs from essentially any source can be expressed in a limited range of suitable host organisms, so that sufficient levels of the encoded proteins can be generated for functional analysis. Recently, these heterologous expression systems have been supplemented by more robust prokaryotic and eukaryotic cell-free protein synthesis systems. In this chapter, common host systems for heterologous expression are reviewed and the current status of cell-free expression systems will be presented. New approaches to overcoming the special problems encountered during the expression of membrane-associated proteins will also be addressed. Methodological considerations, including the characteristics of codon usage in the expressed DNA, peptide tags that facilitate subsequent purification of the expressed proteins and the role of post-translational modifications, are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown, D. and Sjölander, K. (2006) Functional classification using phylogenomic inference. PLoS Comput. Biol. 2, 479–483.

    Article  CAS  Google Scholar 

  2. Hrmova, M., Burton, R.A., Biely, P., Lahnstein, J., and Fincher, G.B. (2006) Hydrolysis of (1,4)-β-d-mannans in barley (Hordeum vulgare L.) is mediated by the concerted action of (1,4)-β-d-mannan endohydrolase and β-d-mannosidase. Biochem. J. 399, 77–90.

    Article  PubMed  CAS  Google Scholar 

  3. Sawasaki, T., Ogasawara, T., Morishita, R., and Endo, Y. (2002) A cell-free protein synthesis system for high-throughput proteomics. Proc. Natl. Acad. Sci. USA 99, 14652–14657.

    Article  PubMed  CAS  Google Scholar 

  4. Endo, Y., Otsuzuki, S., Ito, K., and Miura, K. (1992) Production of an enzymatic active protein using a continuous flow cell-free translation system. J. Biotechnol. 25, 221–230.

    Article  PubMed  CAS  Google Scholar 

  5. Kost, T.A. (1997) Expression systems: gene expression systems in the genomics era. Curr. Opin. Biotechnol. 8, 539–541.

    Article  PubMed  CAS  Google Scholar 

  6. Dubessay, P., Pages, M., Delbac, F., Bastien, P., Vivares, C., and Blaineau, C. (2004) Can heterologous gene expression shed (a torch) light on protein function? Trends Biotechnol. 22, 557–559.

    Article  PubMed  CAS  Google Scholar 

  7. Endo, Y. and Sawasaki, T. (2004) High-throughput, genome-scale protein production method based on the wheat germ cell-free expression system. J. Struct. Funct. Genomics 5, 45–57.

    Article  PubMed  CAS  Google Scholar 

  8. Gustafsson, C., Govindarajan, S., and Minshull, J. (2004) Codon bias and heterologous protein expression. Trends Biotechnol. 22, 346–353.

    Article  PubMed  CAS  Google Scholar 

  9. Olins, P.O. (1996) Quantity versus authenticity of heterologously produced proteins: an inevitable compromise? Curr. Opin. Biotechnol. 7, 487–488.

    Article  PubMed  CAS  Google Scholar 

  10. Braun, P. and LaBaer, J. (2003) High throughput protein production for functional proteomics. Trends Biotechnol. 21, 383–388.

    Article  PubMed  CAS  Google Scholar 

  11. Geisse, S., Gram, H., Kleuser, B., and Kocher, H.P. (1996) Eukaryotic expression systems: a comparison. Protein Expr. Purif. 8, 271–282.

    Article  PubMed  CAS  Google Scholar 

  12. Persans, M.W., Nieman, K., and Salt, D.E. (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc. Natl. Acad. Sci. USA 98, 9995–10000.

    Article  PubMed  CAS  Google Scholar 

  13. Opekarova, M. and Tanner, W. (2003) Specific lipid requirements of membrane proteins – a putative bottleneck in heterologous expression. Biochim. Biophys. Acta. 1610, 11–22.

    Article  PubMed  CAS  Google Scholar 

  14. Opekarova, M., Robl, I., Grassl, R., and Tanner, W. (1999) Expression of eukaryotic plasma membrane transporter HUP1 from Chlorella kessleri in Escherichia coli. FEMS Microbiol. Lett. 174, 65–72.

    Article  PubMed  CAS  Google Scholar 

  15. Robl, I., Grassl, R., Tanner, W., and Opekarova, M. (2000) Properties of a reconstituted eukaryotic hexose/proton symporter solubilized by structurally related non-ionic detergents: specific requirement of phosphatidylcholine for permease stability. Biochim. Biophys. Acta 1463, 407–418.

    Article  PubMed  CAS  Google Scholar 

  16. Kurland, C. and Gallant, J. (1996) Errors of heterologous protein expression. Curr. Opin. Biotechnol. 7, 489–493.

    Article  Google Scholar 

  17. Baca, A.M. and Hol, W.G. (2000) Overcoming codon bias: a method for high-level overexpression of Plasmodium and other AT-rich parasite genes in Escherichia coli. Int. J. Parasitol. 30, 113–118.

    Article  PubMed  CAS  Google Scholar 

  18. Hochuli, E., Dobeli, H., and Schacher, A. (1987) New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J. Chromatogr. 411, 177–184.

    Article  PubMed  CAS  Google Scholar 

  19. Huth, J.R., Bewley, C.A., Jackson, B.M., Hinnebusch, A.G., Clore, G.M., and Gronenborn, A.M. (1997) Design of an expression system for detecting folded protein domains and mapping macromolecular interactions by NMR. Protein Sci. 6, 2359–2364.

    Article  PubMed  CAS  Google Scholar 

  20. LaVallie, E.R., DiBlasio, E.A., Kovacic, S., Grant, K.L., Schendel, P.F., and McCoy, J.M. (1993) A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology 11, 187–193.

    Article  PubMed  CAS  Google Scholar 

  21. Smith, D.B. and Johnson, K.S. (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31–40.

    Article  PubMed  CAS  Google Scholar 

  22. di Guan, C., Li, P., Riggs, P.D., and Inouye, H. (1988) Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene 67, 21–30.

    Article  PubMed  CAS  Google Scholar 

  23. Davis, G.D., Elisee, C., Newham, D.M., and Harrison, R.G. (1999) New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol. Bioeng. 65, 382–388.

    Article  PubMed  CAS  Google Scholar 

  24. Chong, S., Mersha, F.B., Comb, D.G., Scott, M.E., Landry, D., Vence, L.M., Perler, F.B., Benner, J., Kucera, R.B., Hirvonen, C.A., Pelletier, J.J., Paulus, H., and Xu, M.Q. (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192, 271–281.

    Article  PubMed  CAS  Google Scholar 

  25. Terpe, K. (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 60, 523–533.

    PubMed  CAS  Google Scholar 

  26. Waugh, D.S. (2005) Making the most of affinity tags. Trends Biotechnol. 23, 316–320.

    Article  PubMed  CAS  Google Scholar 

  27. Kapust, R.B. and Waugh, D.S. (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci. 8, 1668–1674.

    Article  PubMed  CAS  Google Scholar 

  28. Smith, D.B. (2000) Generating fusions to glutathione S-transferase for protein studies. Methods Enzymol. 326, 254–270.

    Article  PubMed  CAS  Google Scholar 

  29. Pagny, S., Bouissonnie, F., Sarkar, M., Follet-Gueye, M., Driouich, A., Schachter, H., Faye, L., and Gomord, V. (2003) Structural requirements for Arabidopsis beta1,2-xylosyltransferase activity and targeting to the Golgi. Plant J. 33, 189–203.

    Article  PubMed  CAS  Google Scholar 

  30. Lorimer, G.H. (1996) A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo. Faseb J. 10, 5–9.

    PubMed  CAS  Google Scholar 

  31. Baneyx, F. and Mujacic, M. (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 22, 1399–1408.

    Article  PubMed  CAS  Google Scholar 

  32. Weickert, M.J., Doherty, D.H., Best, E.A., and Olins, P.O. (1996) Optimization of heterologous protein production in Escherichia coli. Curr. Opin. Biotechnol. 7, 494–499.

    Article  PubMed  CAS  Google Scholar 

  33. Blum, P., Ory, J., Bauernfeind, J., and Krska, J. (1992) Physiological consequences of DnaK and DnaJ overproduction in Escherichia coli. J. Bacteriol. 174, 7436–7444.

    PubMed  CAS  Google Scholar 

  34. Wetzel, R. (1994) Mutations and off-pathway aggregation of proteins. Trends Biotechnol. 12, 193–198.

    Article  PubMed  CAS  Google Scholar 

  35. Georgiou, G. and Valax, P. (1996) Expression of correctly folded proteins in Escherichia coli. Curr. Opin. Biotechnol. 7, 190–197.

    Article  CAS  Google Scholar 

  36. Raikhel, N. and Chrispeels, M. (2000) Protein sorting and vesicle traffic, in Biochemistry ' Molecular Biology of Plants (Buchanan, B.B., Gruissem, W., and Jones, R., eds.), John Wiley ' Sons, New York, pp. 160–201.

    Google Scholar 

  37. Spremulli, L. (2000) Protein synthesis, assembly, and degradation, in Biochemistry ' Molecular Biology of Plants (Buchanan, B.B., Gruissem, W., and Jones, R., eds.), John Wiley ' Sons, New York, pp. 412–454.

    Google Scholar 

  38. Bencurova, M., Rendic, D., Fabini, G., Kopecky, E., Altmann, F., and Wilson, I. (2003) Expression of eukaryotic glycosyltransferases in the yeast Pichia pastoris. Biochimie 85, 413–422.

    Article  PubMed  CAS  Google Scholar 

  39. Grisshammer, R. and Tate, C.G. (1995) Overexpression of integral membrane proteins for structural studies. Q. Rev. Biophys. 28, 315–422.

    Article  PubMed  CAS  Google Scholar 

  40. Malissard, M., Zeng, S., and Berger, E.G. (1999) The yeast expression system for recombinant glycosyltransferases. Glycoconj. J. 16, 125–139.

    Article  PubMed  CAS  Google Scholar 

  41. Eckart, M.R. and Bussineau, C.M. (1996) Quality and authenticity of heterologous proteins synthesized in yeast. Curr. Opin. Biotechnol. 7, 525–530.

    Article  PubMed  CAS  Google Scholar 

  42. Sadhukhan, R. and Sen, I. (1996) Different glycosylation requirements for the synthesis of enzymatically active angiotensin-converting enzyme in mammalian cells and yeast. J. Biol. Chem. 271, 6429–6434.

    Article  PubMed  CAS  Google Scholar 

  43. Wagner, S., Bader M.L., Drew, D., and de Gier, J.W. (2006) Rationalizing membrane protein overexpression. Trends Biotechnol. 24, 364–371.

    Article  PubMed  CAS  Google Scholar 

  44. McCarroll, L. and King, L.A. (1997) Stable insect cell cultures for recombinant protein production. Curr. Opin. Biotechnol. 8, 590–594.

    Article  PubMed  CAS  Google Scholar 

  45. Liepman, A.H., Wilkerson, C.G., and Keegstra, K. (2005) Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc. Natl. Acad. Sci. USA 102, 2221–2226.

    Article  PubMed  CAS  Google Scholar 

  46. Makrides, S.C. (1999) Components of vectors for gene transfer and expression in mammalian cells. Protein Expr. Purif. 17, 183–202.

    Article  PubMed  CAS  Google Scholar 

  47. Marino, M. (1989) Expression systems for heterologous protein production. BioPharm. 2, 18–33.

    CAS  Google Scholar 

  48. Daly, R. and Hearn, M.T. (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J. Mol. Recognit. 18, 119–138.

    Article  PubMed  CAS  Google Scholar 

  49. Elbein, A.D. (1984) Inhibitors of the biosynthesis and processing of N-linked oligosaccharides. CRC Crit. Rev. Biochem. 16, 21–49.

    Article  PubMed  CAS  Google Scholar 

  50. Colosimo, A., Goncz, K.K., Holmes, A.R., Kunzelmann, K., Novelli, G., Malone, R.W., Bennett, M.J., and Gruenert, D.C. (2000) Transfer and expression of foreign genes in mammalian cells. Biotechniques 29, 314–318.

    PubMed  CAS  Google Scholar 

  51. Kammerloher, W., Fischer, U., Piechottka, G.P., and Schaffner, A.R. (1994) Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system. Plant J. 6, 187–199.

    Article  PubMed  CAS  Google Scholar 

  52. Perrin, R., DeRocher, A., Bar-Peled, M., Zeng, W., Norambuena, L., Orellana, A., Raikhel, N., and Keegstra, K. (1999) Xyloglucan fucosyltransferase, an enzyme involved in plant cell wall biosynthesis. Science 284, 1976–1979.

    Article  PubMed  CAS  Google Scholar 

  53. Hellwig, S., Drossard, J., Twyman, R., and Fischer, R. (2004) Plant cell cultures for the production of recombinant proteins. Nat. Biotechnol. 22, 1415–1422.

    Article  PubMed  CAS  Google Scholar 

  54. Li, Y., Geng, Y., Song, H., Zheng, G., Huan, L., and Qiu, B. (2004) Expression of a human lactoferrin N-lobe in Nicotiana benthmiana with potato virus X-based agroinfection. Biotechnol. Lett. 26, 953–957.

    Article  PubMed  CAS  Google Scholar 

  55. Marillonnet, S., Giritch, A., Gils, M., Kandzia, R., Klimyuk, V., and Gleba, Y. (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc. Natl. Acad. Sci. USA 101, 6852–6857.

    Article  PubMed  CAS  Google Scholar 

  56. Selth, L.A., Randles, J.W., and Rezaian, M.A. (2004) Host responses to transient expression of individual genes encoded by tomato leaf curl virus. Mol. Plant Microbe Interact. 17, 27–33.

    Article  PubMed  CAS  Google Scholar 

  57. Wagner, B., Hufnagl, K., Radauer, C., Wagner, S., Baier, K., Scheiner, O., Wiedermann, U., and Breiteneder, H. (2004) Expression of the B subunit of the heat-labile enterotoxin of Escherichia coli in tobacco mosaic virus-infected Nicotiana benthamiana plants and its characterization as mucosal immunogen and adjuvant. J. Immunol. Methods 287, 203–215.

    Article  PubMed  CAS  Google Scholar 

  58. Gomord, V. and Faye, L. (2004) Posttranslational modification of therapeutic proteins in plants. Curr. Opin. Plant Biol. 7, 171–181.

    Article  PubMed  CAS  Google Scholar 

  59. Fischer, R., Stoger, E., Scillberg, S., Christou, P., and Twyman, R. M. (2004) Plant based production of biopharmaceuticals. Curr. Opin. Plant Biol. 7, 152–158.

    Article  PubMed  CAS  Google Scholar 

  60. Maliga, P. and Graham, I. (2004) Molecular farming and metabolic engineering promise a new generation of high-tech crops. Curr. Opin. Plant Biol. 7, 149–151.

    Article  PubMed  Google Scholar 

  61. Porta, C. and Lomonossoff, G.P. (2002) Viruses as vectors for the expression of foreign sequences in plants. Biotech. Genet. Eng. Rev. 19, 245–291.

    CAS  Google Scholar 

  62. Gleba, Y., Marillonnet, S., and Klimyuk, V., (2004) Engineering viral expression vectors for plants: the “full virus” and the “deconstructed virus” strategies. Curr. Opin. Plant Biol. 7, 182–188.

    Article  PubMed  CAS  Google Scholar 

  63. Gleba, Y., Klimyuk, V., and Marillonnet, S. (2005) Magnifection – a new platform for expressing recombinant vaccines in plants. Vaccine 23, 2042–2048.

    Article  PubMed  CAS  Google Scholar 

  64. Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., and Gleba, Y. (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nature Biotech. 23, 718–723.

    Article  CAS  Google Scholar 

  65. Gils, M.,Kandzia, R., Marillonnet, S., Klimyuk, V., and Gleba, Y. (2005) High-yield production of authentic human growth hormone using a plant virus-based expression system. Plant Biotech. J. 3, 613–620.

    Article  CAS  Google Scholar 

  66. Santi, L., Giritch, A., Roy, C., Marillonnet, S., Klimyuk, V., Gleba, Y., Webb, R., Arntzen, C.J., and Mason, H.S. (2006) Protection conferred by recombinant Yersinia pestis antigens produced by a rapid and highly scalable plant expression system. Proc. Nat. Aca. Sci. USA 103, 861–866.

    Article  CAS  Google Scholar 

  67. Awram, P., Gardner, R.C., Forster, R.L., and Bellamy A.R. (2002) The potential of plant viral vectors and transgenic plants for subunit vaccine production. Adv. Virus Res. 58, 81–124.

    Article  PubMed  CAS  Google Scholar 

  68. Giritch, A., Marillonnet, S., Engler, C., van Eldik, G., Botterman, J., Klimyuk, V., and Gleba, Y. (2006) Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proc. Natl. Acad. Sci. USA 103, 14701–14706.

    Article  PubMed  CAS  Google Scholar 

  69. Frank, W., Ratnadewi, D., and Reski, R. (2005) Physcomitrella patens is highly tolerant against drought, salt and osmotic stress. Planta 220, 384–394.

    Article  PubMed  CAS  Google Scholar 

  70. Cove, D., Knight, C., and Lamparter, T. (1997) Mosses as model systems. Trends Plant Sci. 2, 99–105.

    Article  Google Scholar 

  71. Reski, R. and Cove, D.J. (2004) Physcomitrella patens. Curr. Biol. 14, R261–R262.

    Article  PubMed  CAS  Google Scholar 

  72. Landy, A. (1989) Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu. Rev. Biochem. 58, 913–949.

    Article  PubMed  CAS  Google Scholar 

  73. Schaefer, D.G. and Zryd, J.P. (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J. 11, 1195–1206.

    Article  PubMed  CAS  Google Scholar 

  74. Decker, E.L. and Reski, R. (2004) The moss bioreactor. Curr. Opin. Plant Biol. 7(2), 166–70.

    Article  PubMed  CAS  Google Scholar 

  75. Koprivova, A., Altmann, F., Gorr, G., Kopriva, S., Reski, R., and Decker, E. (2003) N-glycosylation in the moss Physcomitrella patens is organised similarly to that in higher plants. Plant Biol. 5, 582–591.

    Article  CAS  Google Scholar 

  76. Zubay, G. (1973) In vitro synthesis of proteins in microbial systems. Annu. Rev. Genet. 7, 267–287.

    Article  PubMed  CAS  Google Scholar 

  77. Nirenberg, M.W. and Matthaei, J.H. (1981) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polynucleotides. Proc. Natl. Acad. Sci. USA 47, 1588–1602.

    Article  Google Scholar 

  78. Spirin, A.S. (2004) High-throughput cell-free systems for synthesis of functionally active proteins. Trends Biotech. 22, 538–545.

    Article  CAS  Google Scholar 

  79. Miles, L.A. (2005) Robust and cost effective cell-free expression of biopharmaceuticals: Escherichia coli and wheat embryo, in Modern Biopharmaceuticals, Design, Development and Optimization, Volume 2 (Knäblein, J., ed.), Wiley-VCH Verlag GmbH ' Co. KGaA, Weinheim, pp. 1063–1081.

    Google Scholar 

  80. Dixon, N.E. (2006) Cell-free protein synthesis. FEBS J. 273, 4131–4132.

    Article  CAS  Google Scholar 

  81. Yokoyama, S. (2003) Protein expression systems for structural genomics and proteomics. Curr. Opin. Chem. Biol. 7, 39–43.

    Article  PubMed  CAS  Google Scholar 

  82. Vinarov, D.A., Lytle, B.L., Peterson, F.C., Tyler, E.M., Volkman, B.F., and Markley, J.L. (2004) Cell-free protein production and labeling protocol for NMR-based structural proteomics. Nat. Methods 1, 149–53.

    Article  PubMed  CAS  Google Scholar 

  83. Spirin, A.S., Baranov, V.I., Ryabova, L.A., Ovodov S.Y., and Alakhov, Y.B. (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242, 1162–1164.

    Article  PubMed  CAS  Google Scholar 

  84. Kigawa T., Yabuki T., Yoshida Y., Tsutsui M., Ito Y., Shibata, T., and Yokoyama, S. (1999) Cell-free production and stable-isotope labeling of milligram quantities of proteins. FEBS Lett. 442, 15–19.

    Article  PubMed  CAS  Google Scholar 

  85. Madin, K., T Sawasaki, T., Ogasawara, T., and Y Endo, Y. (2000) A highly efficient and robust cell-free protein synthesis system prepared from wheat embryos: plants apparently contain a suicide system directed at ribosomes. Proc. Natl. Acad. Sci. USA 97, 559–564.

    Article  PubMed  CAS  Google Scholar 

  86. Mikami, S., Masutani, M.N., Yokoyama, S., and Imataka, H. (2006a) An efficient mammalian cell-free translation system supplemented with translation factors. Protein Expr. Purif. 46, 348–357.

    Article  CAS  Google Scholar 

  87. Ezure, T., Suzuki, T., Higashide, S., Shintani, E., Endo, K., Kobayashi, S., Shikata, M., Ito, M., Tanimizu, K., and Nishimura, O. (2006) Cell-free protein synthesis system prepared from insect cells by freeze-thawing. Biotechnol. Prog. 22, 1570–1577.

    Article  PubMed  CAS  Google Scholar 

  88. Mikami, S., Kobayashi, T., Yokoyama, S., and Imataka, H. (2006b) A hybridoma-based in vitro translation system that efficiently synthesizes glycoproteins. J. Biotechnol. 127, 65–78.

    Article  CAS  Google Scholar 

  89. Palmer, E., Liu, H., Khan, F., Taussig, M.J., and He, M. (2006) Enhanced cell-free protein expression by fusion with immunoglobulin Cκ domain. Protein Sci. 15, 2842–2846.

    Article  PubMed  CAS  Google Scholar 

  90. Arai, R., Kukimoto-Niino, M., Uda-Tochio, H. Morita, S., Uchikubo-Kamo, T., Akasaka, R., Etou, Y., Hayashizaki, Y., Kigawa, T., Terada, T., Shirouzu, M., and Yokoyama, S. (2005) Crystal structure of an enhancer of rudimentary homolog (ERH) at 2.1 Å resolution. Protein Sci. 14, 1888–1893.

    Article  PubMed  CAS  Google Scholar 

  91. Staunton, D., Schlinkert, R., Zanetti, G., Colebrook, S.A., and Campbell, I.D. (2006) Cell-free expression and selective isotope labelling in protein NMR. Magn. Reson. Chem. 44, S2–S9.

    Article  PubMed  CAS  Google Scholar 

  92. Kang, S.H., Kim, D.M., Kim, H.J., Jun, S.Y., Lee, K.Y., and Kim, H.J. (2005) Cell-free production of aggregation-prone proteins in soluble and active forms. Biotechnol. Prog. 21, 1412–1419.

    Article  PubMed  CAS  Google Scholar 

  93. Kawasaki, T., Gouda, M.D., Sawasaki, T., Takai, K., and Endo, Y. (2003) Efficient synthesis of a disulfide-containing protein through a batch cell-free system from wheat germ. Eur. J. Biochem. 270, 4680–4786.

    Article  CAS  Google Scholar 

  94. Jiang, X., Ookubo, Y., Fujii, I., Nakano, H., and Yamane, T. (2002) Expression of Fab fragment of catalytic antibody 6D9 in an Escherichia coli in vitro coupled transcription/translation system. FEBS Lett. 514, 290–294.

    Article  PubMed  CAS  Google Scholar 

  95. Klammt, C., Schwarz, D., Löhr, F., Schneider, B., Dötsch, V., and Bernhard, F. (2006) Cell-free expression as an emerging technique for the large scale production of integral membrane protein. FEBS J. 273, 4141–4153.

    Article  PubMed  CAS  Google Scholar 

  96. Klammt, C., Schwarz, D., Eifler, N., Engel, A., Piehler, J., Haase, W., Hahn, S., Dötsch,V., and Bernhard, F. (2007) Cell-free production of G protein-coupled receptors for functional and structural studies. J. Struct. Biol. (in press); online: doi:10.1016/j.jsb.2007.01.006

    Google Scholar 

  97. Klammt, C., Schwarz, D., Fendler, K., Haase, W., Dotsch, V., and Bernhard, F. (2005) Evaluation of detergents for the soluble expression of alpha-helical and beta-barrel-type integral membrane proteins by a preparative scale individual cell-free expression system. FEBS J. 272, 6024–6038.

    Article  PubMed  CAS  Google Scholar 

  98. Pocanschi, C.L., Dahmane, T., Gohon, Y., Apell, H.-J., Kleinschmidt, J.H., and Popot, J.-L. (2006) Amphipathic polymers: tools to fold integral membrane proteins to their active form. Biochemistry 45, 13954–13961.

    Article  PubMed  CAS  Google Scholar 

  99. Lyford, L.K. and Rosenberg, R.L. (1999) Cell-free expression and functional reconstitution of homo-oligomeric alpha7 nicotinic acetylcholine receptors into planar lipid bilayers. J. Biol. Chem. 274, 25675–25681.

    Article  PubMed  CAS  Google Scholar 

  100. Perrin, R. (2001) Cellulose: how many cellulose synthases to make a plant? Curr. Biol. 11, R213–R216.

    Article  PubMed  CAS  Google Scholar 

  101. Voinnet, O., Rivas, S., Mestre, P., and Baulcombe, D. (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 33, 949–956.

    Article  PubMed  CAS  Google Scholar 

  102. Komarnytsky, S., Gaume, A., Garvey, A., Borisjuk, N., and Raskin, I. (2004) A quick and efficient system for antibiotic-free expression of heterologous genes in tobacco roots. Plant Cell Rep. 22, 765–773.

    Article  PubMed  CAS  Google Scholar 

  103. Bonnal, S., Boutonnet, C., Prado-Lourenco, L., and Vagner, S. (2003) IRESdb: the Internal Ribosome Entry Site database. Nucleic Acids Res. 31, 427–428.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the Australian Research Council, the Grains Research and Development Corporation and the South Australian State Government is gratefully acknowledged. We thank Bianca Kuchel for her invaluable technical assistance with aspects of the work described here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey B. Fincher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Farrokhi, N., Hrmova, M., Burton, R., Fincher, G. (2009). Heterologous and Cell-Free Protein Expression Systems. In: Gustafson, J., Langridge, P., Somers, D. (eds) Plant Genomics. Methods in Molecular Biology™, vol 513. Humana Press. https://doi.org/10.1007/978-1-59745-427-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-427-8_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-997-0

  • Online ISBN: 978-1-59745-427-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics