Impedimetric Detection for DNA Hybridization Within Microfluidic Biochips

  • Louise Lingerfelt
  • James Karlinsey
  • James Landers
  • Anthony Guiseppi-Elie
Part of the Methods in Molecular Biology™ book series (MIMB, volume 385)


A fully integrated biochip for the performance of microfluidic-based DNA bioassays is presented. A microlithographically fabricated circumferential interdigitated electrode array of 1- to 5-µm critical line and space dimensions, with associated large area counterelectrode (1000 × WE) and reference electrode (Ag/AgCl), has been developed as a four-electrode system for the electrochemical detection of DNA hybridization using any of the techniques of amperometry, voltammetry, potentiometry, and impedimetry. This is presented as an alternative to optical detection with an emphasis on label-free impedimetric detection of hybridization. A micro total analysis system (µTAS) is presented, using fluidic channels to connect integrated reaction domains with downstream electrochemical detection. This is accomplished by bonding a patterned poly(dimethylsiloxane) (PDMS) substrate to the biochip or by adhesive bonding of the chip to channels fabricated within glass and plastic microfluidic cards, adding increased functionality to the device.

Key Words

DNA hybridization electrochemical impedance spectroscopy DNA diagnostics oligonucleotide silanes DNA immobilization biochips poly(dimethylsiloxane) micro total analysis system (μTAS) 


  1. 1.
    Guiseppi-Elie, A. (2003) Biochip platform for DNA diagnostics. PharmaTech 87, 1–6.Google Scholar
  2. 2.
    Landers, J. P. (2003) Molecular diagnostic analysis using electrophorectic microchips. Anal. Chem. 75, 2919–2927.CrossRefGoogle Scholar
  3. 3.
    Breadmore, M. C., Wolfe, K. A., Arcibal, I. G., et al. (2003) Microchip-based purification of DNA from biological samples. Anal. Chem. 75, 1880–1886.CrossRefGoogle Scholar
  4. 4.
    Schena, M., ed. (1999) DNA Microarrays: A Practical Approach, Oxford University Press, New York.Google Scholar
  5. 5.
    Guiseppi-Elie, A. and Lingerfelt, L. (2005) Impedimetric detection of DNA hybridization: towards near patient DNA diagnostics, in Immobilisation of DNA on Chips 1(Wittmann, C., ed.), Springer-Verlag, New York.Google Scholar
  6. 6.
    Gheorge, M. and Guiseppi-Elie, A. (2003) Electrical frequency dependent characterization of DNA hybridization. Bios. Bioelectron. 19, 95–102.CrossRefGoogle Scholar
  7. 7.
    Hang, T. C. and Guiseppi-Elie, A. (2004) Frequency dependent and surface characterization of DNA immobilization and hybridization. Bios. Bioelectron. 19, 1537–1548.CrossRefGoogle Scholar
  8. 8.
    Guiseppi-Elie, A., Wallace, G. G., and Matsue, T. (1998) Chemical and biological sensors based on electrically conducting polymers, in Handbook of Conducting Polymers (Skotheim, T. A., Elsenbaumer, R. L., and Reynolds, J. R., eds.), Marcel Dekker, Inc., New York.Google Scholar
  9. 9.
    Gheorge, M. and Guiseppi-Elie, A. (2000) Low-density arrays of DNA-doped polypyrrole. Proc. Am. Chem. Soc. PMSE 83, 550–551.Google Scholar
  10. 10.
    Lei, C., Gheorge, M., and Guiseppi-Elie, A. (2000) DNA immobilization and bioelectric detection based on conducting polymers. Proc. Am. Chem. Soc. PMSE 83, 552–553.Google Scholar
  11. 11.
    Popovich, N. D., Eckhardt, A. E., Mikulecky, J. C., Napier, M. E., and Thomas, R. S. (2002) Electrochemical sensor for detection of unmodified nucleic acids. Talanta 56, 821–828.CrossRefGoogle Scholar
  12. 12.
    Sheppard, J. and Guiseppi-Elie, A. (1998) Enzyme sensors based on conductimetric measurement, in Enzyme and Microbial Biosensors: Techniques and Protocols (Mulchandani, A. and Rogers, K. R., eds.), Humana Press, Totowa, NJ.Google Scholar
  13. 13.
    Kell, D. B. (1987) The principles and potential of electrical admittance spectroscopy: an introduction, in Biosensors: Fundamentals and Applications (Turner, A., Karube, I., and Wilson, G. S., eds.), Oxford University Press, Oxford, pp. 427–468Google Scholar
  14. 14.
    Lamture, J. B., Beattie, K. L., Burke, B. E., et al. (1994) Direct detection of nucleic acid hybridization on the surface of a charge coupled device. Nucleic Acids Res. 22, 2121–2125.CrossRefGoogle Scholar
  15. 15.
    Maskos, U. and Southern, E. M. (1992) Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesized in situ. Nucleic Acids Res. 20, 1679–1684.CrossRefGoogle Scholar
  16. 16.
    Sales, J. A. A., Prado, A. G. S., and Airoldi, C. (2002) The incorporation of propane-1,3-diamine into silylant epoxide group through homogenous and heterogeneous routes. Polyhedron 21, 2647–2651.CrossRefGoogle Scholar
  17. 17.
    Taylor, S., Smith, S., Windle, B., and Guiseppi-Elie, A. T. (2003) Impact of surface chemistry and blocking strategies on DNA microarrays. Nucleic Acids Res. 31, e87.CrossRefGoogle Scholar
  18. 18.
    Duffy, D. C., McDonald, J. C., Schueller, O. J. A., and Whitesides, G. M. (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984.CrossRefGoogle Scholar
  19. 19.
    Lorenz, H., Despont, M., Fahrni, N., LaBianca, N., Renaud, P., and Vettiger, P. (1997) SU-8: a low-cost negative resist for MEMS. J. Micromechan. Microeng. 7, 121–124.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Louise Lingerfelt
    • 1
  • James Karlinsey
    • 2
  • James Landers
    • 2
  • Anthony Guiseppi-Elie
    • 3
  1. 1.Center for Bioelectronics, Biosensors, and Biochips, School of EngineeringVirginia Commonwealth UniversityRichmond
  2. 2.Department of ChemistryUniversity of VirginiaCharlottesville
  3. 3.Chemical and Biomolecular EngineeringClemson UniversityClemson

Personalised recommendations