Microchip for the Diagnosis of Cervical Cancer

  • Anja Gulliksen
  • Frank Karlsen
Part of the Methods in Molecular Biology™ book series (MIMB, volume 385)


Cancer affects more people than any other disease. About one-third of the world’s population is likely to get this diagnosis during their lifetime. Currently, the diagnostic methods for cancer detection are based on visual inspection. The lack of high analytical and clinical specificity and sensitivity makes these methods in many cases inferior to recently developed molecular methods. The increased clinical specificity and sensitivity of these new molecular approaches have great benefits, such as the possibility of implementing the molecular methods in miniaturized systems and enabling easier and faster point-of-care or bedside diagnostics. This chapter provides an introduction to performing clinical trials, screening, and molecular diagnostics against cancer-related markers. In addition, an example of molecular diagnosis of cervical cancer within a microsystem concept will be presented.

Key Words

Cancer human papilloma virus nucleic acid sequence-based amplification molecular diagnostics mRNA point-of-care microsystems 


  1. 1. (July 2005).Google Scholar
  2. 2.
    Zuckerman, A. J. (1979) Role of the hepatitis B virus in primary liver cancer. J. Toxicol. Environ. Health 5, 275–280.CrossRefGoogle Scholar
  3. 3.
    Hadziyannis, S. J. (1981) Primary liver cancer and its relationship to chronic infection with the hepatitis B virus. Springer Semin. Immunopathol. 3, 473–485.CrossRefGoogle Scholar
  4. 4.
    Marx, J. L. (1986) Human papilloma virus and cervical cancer. Science 231, 920.CrossRefGoogle Scholar
  5. 5.
    Longworth, M. S. and Laimins, L. A. (2004) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol. Mol. Biol. Rev. 68, 362–372.CrossRefGoogle Scholar
  6. 6.
    Muñoz, N., Bosch, F. X., de Sanjosé, S., et al. (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med. 348, 518–527.CrossRefGoogle Scholar
  7. 7.
    Walboomers, J. M. M., Jacobs, M. V., Manos, M. M., et al. (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189, 12–19.CrossRefGoogle Scholar
  8. 8.
    Kraus, I., Molden, T., Ernø, L. E., Skomedal, H., Karlsen, F., and Hagmar, B. (2004) Human papillomavirus oncogenic expression in the dysplastic portio; an investigation of biopsies from 190 cervical cones. Br. J. Cancer 90, 1407–1413.CrossRefGoogle Scholar
  9. 9.
    Cuschieri, K. S., Whitley, M. J., and Cubie, H. A. (2004) Human papillomavirus type specific DNA and RNA persistence-implications for cervical disease progression and monitoring. J. Med. Virol. 73, 65–70.CrossRefGoogle Scholar
  10. 10.
    Marwick, C. (1990) Helicobacter: new name, new hypothesis involving type. JAMA 264, 2724–2727.CrossRefGoogle Scholar
  11. 11.
    Graham, D. Y. (2000) Helicobacter pylori infection is the primary cause of gastric cancer. Gastroenterology 35(Suppl 12), 90–97.Google Scholar
  12. 12.
    Houlston, R. S., Collins, A., Slack, J., and Norton, N. E. (1992) Dominant genes for colorectal cancer are not rare. Ann. Hum. Genet. 56, 99–103.CrossRefGoogle Scholar
  13. 13.
    de la Chapelle, A. (1999) Testing tumors for microsatellite instability. Eur. J. Hum. Genet. 7, 407–408.CrossRefGoogle Scholar
  14. 14.
    Wang, D. G., Fan, J.bB., Siao, C.-J., et al. (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280, 1077–1082.CrossRefGoogle Scholar
  15. 15.
    Saiki, R. K., Scharf, S., Faloona, F., et al. (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354.CrossRefGoogle Scholar
  16. 16.
    Solinas-Toldo, S., Lampel, S., Stilgenbauer, S., et al. (1997) Matrix-based comparative geniomic hybridization: biochips to screen for genomic imbalances. Genes Chromos. Cancer 20, 399–407.CrossRefGoogle Scholar
  17. 17.
    Southern, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–507.CrossRefGoogle Scholar
  18. 18.
    Sanger, F., Nicklen, S., and Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467.CrossRefGoogle Scholar
  19. 19.
    Jeffreys, A. J., Wilson, V., and Thein, S. L. (1985) Individual-specific “fingerprints” of human DNA. Nature 316, 76–79.CrossRefGoogle Scholar
  20. 20.
    Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., and Sekiya T. (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86, 2766–2770.CrossRefGoogle Scholar
  21. 21.
    Becich, M. J. (2000) The role of the pathologist as tissue refiner and data miner: the impact of functional genomics on the modern pathology laboratory and the critical roles of pathology informatics and bioinformatics. Mol. Diagn. 5, 287–299.Google Scholar
  22. 22.
    Lockhart, D. J. and Winzeler, E. A. (2000) Genomics, gene expression and DNA arrays. Nature 405, 827–836.CrossRefGoogle Scholar
  23. 23.
    Barany, F. (1991) Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc. Natl. Acad. Sci. USA 88, 189–193.CrossRefGoogle Scholar
  24. 24.
    Walker, G. T., Little, M. C., Nadeau, J. G., and Shank, D. D. (1992) Isothermal in vitro amplification of DNA by restriction enzyme/DNA polymerase system. Proc. Natl. Acad. Sci. USA 89, 392–396.CrossRefGoogle Scholar
  25. 25.
    Spargo, C. A., Fraiser, M. S., Van Cleve, M., et al. (1996) Detection of M. turberculosis DNA using thermophilic strand displacement amplification. Mol. Cell Probes 10, 247–256.CrossRefGoogle Scholar
  26. 26.
    Nycz, C. M., Dean, C. H., Haaland, P. D., Spargo, C. A., and Walker, G. T. (1998) Quantitative reverse transcription strand displacement amplification: quantitation of nucleic acids using an isothermal amplification technique. Anal. Biochem. 259, 226–234.CrossRefGoogle Scholar
  27. 27.
    Compton, J. (1991) Nucleic acid sequence-based amplification. Nature 350, 91–92.CrossRefGoogle Scholar
  28. 28.
    Deiman, B., van Aarle, P., and Sillekens, P. (2002) Characteristics and Applications of the nucleic acid sequence-based amplification (NASBA). Mol. Biotechnol. 20, 163–179.CrossRefGoogle Scholar
  29. 29.
    Leone, G., van Schijndel, H., van Gemen, B., Kramer, F. R., Schoen, C. D. (1998) Nucleic Acids Res. 26, 2150–2155.CrossRefGoogle Scholar
  30. 30.
    Pasternack, R., Vuorinen, P., and Miettinen, A. (1997) Evaluation of the Gen-Probe Chlamydia trachomatis transcription-mediated amplification assay with urine specimens from women. J. Clin. Microbiol. 35, 676–678.Google Scholar
  31. 31.
    Horn, T. and Urdea, M. (1989) Forks and combs and DNA: the synthesis of branched oligodeoxyribonucleotides. Nucleic Acids Res. 17, 6959–6967.CrossRefGoogle Scholar
  32. 32.
    Horn, T., Chang, C.-A., and Urdea, M. S. (1997) Chemical synthesis and characterization of branched oligodeoxynucleotides (bDNA) for use as signal amplifiers in nucleic acid quantification assays. Nucleic Acids Res. 25, 4842–4849.CrossRefGoogle Scholar
  33. 33.
    Manos, M. M., Kinney, W. K., Hurley, L. B., Sherman, M. E., et al. (1999) Identifying women with cervical neoplasia: using human papillomavirus DNA testing for equivocal Papanicolaou results. JAMA 281, 1605–1610.CrossRefGoogle Scholar
  34. 34.
    Fire, A. and Xu, S.-Q. (1995) Rolling replication of short DNA circles. Proc. Natl. Acad. Sci. USA 92, 4641–4645.CrossRefGoogle Scholar
  35. 35.
    Liu, D., Daubendiek, S. L., Zillmann, M. A., Ryan, K., and Kool, E. T. (1996) Rolling circle DNA synthesis: small circular oligonucleotides as efficient templates DNA polymerases. J. Am. Chem. Soc. 118, 1587–1594.CrossRefGoogle Scholar
  36. 36.
    Tyagi, S. and Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridisation. Nat. Biotechnol. 14, 303–308.CrossRefGoogle Scholar
  37. 37.
    Tüdós, A. J., Besselink, G. A. J., and Schafoort, R. B. M. (2001) Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1, 83–95.CrossRefGoogle Scholar
  38. 38.
    Verpoorte, E. (2002) Microfluidic chips for clinical and forensic analysis. Electrophoresis 23, 677–712.CrossRefGoogle Scholar
  39. 39.
    www.nci.nih.govGoogle Scholar
  40. 40.
    Loi, S., Desmedt, C., Cardoso, F., Piccart, M., and Sotiriou, C. (2005) Breast cancer gene expression profiling: clinical trial and practice implications. Pharmacogenetics 6, 49–58.Google Scholar
  41. 41.
    Robison, J. E., Perreard, L., and Bernard, P. S. (2004) State of the science: molecular classifications of breast cancer for clinical diagnostics. Clin. Biochem. 37, 572–578.CrossRefGoogle Scholar
  42. 42.
    Lukas, J., Gao, D.-Q., Keshmeshian, M., Wen, W.-H., Tsao-Wei, D., Rosenberg, S., and Press, M. F. (2001) Alternative and aberrant messenger RNA splicing of the mdm2 oncogene in invasive breast cancer. Cancer Res. 61, 3212–3219.Google Scholar
  43. 43.
    Jenkins, D. (2001) Diagnosing human papillomaviruses: recent advances. Curr. Opin. Infect. Dis. 14, 53–62.CrossRefGoogle Scholar
  44. 44.
    Gulliksen, A., Solli, L., Karlsen, F., et al. (2004) Real-time nucleic acid sequence-based amplification in nanoliter volumes. Anal. Chem. 76, 9–14.CrossRefGoogle Scholar
  45. 45.
    Boom, R., Sol, C. J. A., Salimans, M. M. M., Jansen, C. L., Wertheim-van Dillen, P. M. E., and van der Noordaa, J. (1990) Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28, 495–503.Google Scholar
  46. 46.
    Boom, R., Sol, C. J. A., Beld, M., Weel, J., Goudsmit, J. and Wertheim-van Dillen, P. (1999) Improved silica-guanidiniumthiocyanate DNA isolation procedure based on selective binding of bovine alpha-casein to silica particles. J. Clin. Microbiol. 37, 615–619.Google Scholar
  47. 47.
    Beld, M., Sol, C., Goudsmit, J. and Boom, R. (1996) Fractionation of nucleic acids into single-stranded and double-stranded forms. Nucleic Acids Res. 24, 2618–2619.CrossRefGoogle Scholar
  48. 48.
    Hatefi, Y. and Hanstein, W. G. (1969) Solubilization of particulate proteins and nonelectrolytes by chaotropic agents. PNAS Biochem. 62, 1129–1136.CrossRefGoogle Scholar
  49. 49.
    von Hippel, P. H. (1964) Neutral salts: The generality of their effects on the stability of macromolecular conformations. Science 145, 577–580.CrossRefGoogle Scholar
  50. 50.
    Lie, A. K., Risberg, B., Borge, B., Sandstad, B., Delabie, J., Rimala, R., Onsrud, M. and Thoresen, S. (2005) DNA versus RNA based methods for human papillomavirus detection in cervical neoplasia. Gynecol. Oncol. 97, 908–915.CrossRefGoogle Scholar
  51. 51.
    Kreader, C. A. (1996) Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl. Environ. Microbiol. 62, 1102–1106.Google Scholar
  52. 52.
    Gulliksen, A., Solli, L. A., Drese, K. S., Sörensen, O., Karlsen, F., Rogne, H., Hovig, E. and Sirevåg, R. (2005) Parallel nanoliter detection of cancer markers using polymer microchips. Lab Chip 5, 416–420.CrossRefGoogle Scholar
  53. 53.
    van Strijp, D. and van Aarle, P. (1998) NASBA—a method for nucleic acid diagnostics, in Diagnostic Virology Protocols (Stephenson, J. R. and Warnes, A., eds.), Humana Press Inc., Totowa, NJ.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Anja Gulliksen
    • 1
  • Frank Karlsen
    • 1
  1. 1.Norchip ASKlokkarstuaNorway

Personalised recommendations