Skip to main content

Surface Plasmon Resonance Imaging on Polypyrrole Protein Chips

Application to Streptavidin Immobilization and Immunodetection

  • Protocol
Microchip-Based Assay Systems

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 385))

Abstract

Initially developed for the construction of DNA chips, the polypyrrole approach has been extended to other biochemical compounds (mainly proteins and oligosaccharides). This method allows one to copolymerize a pyrrole monomer with a biomolecule bearing a pyrrole group; this reaction is based on an electrochemical process allowing a very fast coupling of the biomolecule (probe) to a gold layer used as a working electrode. Fluorescence-based detection processes are classically used for evidence biorecognition on biochips; in order to avoid the labeling of the targets, we propose an alternative method—surface plasmon resonance imaging (SPRi).

Surface plasmon resonance (SPR) is a typical label-free method for real-time detection of the binding of biological molecules onto functionalized surfaces. This surface-sensitive optical method is based upon evanescent wave sensing on a thin metal layer. The SPR approach described herein is performed in an imaging geometry that allows simultaneous monitoring of biorecognition reactions occurring on an array of immobilized probes (chip). In a SPRi experiment, local changes in reflectivity are recorded with a charge-coupled device (CCD) camera and are exploited to monitor up to 100 different biological reactions occurring on the molecules linked to the polypyrrole matrix. This method will be applied to protein recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angenendt, P., Glökler, J., Murphy, D., Lehrach, H., and Cahill, D. J. (2002) Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal. Biochem. 309, 253–260.

    Article  CAS  Google Scholar 

  2. Yershov, G., Barsky, V., Belgovskiy, A., et al. (1996) DNA analysis and diagnostics on oligonucleotide microchips. Proc. Natl. Acad. Sci. USA 93, 4913–4918.

    Article  CAS  Google Scholar 

  3. Sheldon, M., Briggs, J., Bryan, R., et al. (1993) Matrix DNA hybridization. Clin. Chem. 39, 718–719.

    Google Scholar 

  4. Blanchard, P., Kaiser, R. J., and Hood, L. E. (1996) High-density oligonucleotide arrays. Biosens. Bioelectron. 11(6–7), 687–690.

    Article  CAS  Google Scholar 

  5. Pease, A. C., Solas, D., Sullivan, E.J., Cronin, M. T., Holmes, C. P., and Fodor, S. P. A. (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. USA 91, 5022–5026.

    Article  CAS  Google Scholar 

  6. Fodor, S. P., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T., and Solas, D. (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251(4995), 767–776.

    Article  CAS  Google Scholar 

  7. Roget, A. and Livache, T. (1999) In situ synthesis and copolymerization of oligonucleotides on conducting polymers. Mikrochim. Acta 131, 3–8.

    Article  CAS  Google Scholar 

  8. Korri-Youssoufi, H., Garnier, F., Srivastava, P., Godillot, P., and Yassar A. (1997). Toward bioelectronics: specific DNA recognition based on an oligonucleotide-functionalized polypyrrole. J. Am. Chem. Soc. 119, 7388–7389.

    Article  CAS  Google Scholar 

  9. Röckel, H., Huber, J., Gleiter, R., and Schuhmann, W. (1994) Poly(dithienylpyrrole) derivatives and their application in synthesis of functionalized amperometric biosensors. Adv. Mat. 6(7–8), 568–571

    Article  Google Scholar 

  10. Wang, J., Jiang, M., Fortes, A., and Muckherjee, B. (1999) New label-free DNA recognition based on doping nuceic-acid probes within conducting polymers films. Anal. Chim. Acta 402, 7–12.

    Article  CAS  Google Scholar 

  11. Thanachasai, S., Furukawa, H., Yoshida, S., and Watanabe, T. (2003) Determination of enzyme immobilized into electropolymerized polymer films. Chem. Lett. 32(2), 176–177.

    Article  CAS  Google Scholar 

  12. Livache, T., Roget, A., Dejean, E., Barthet, C., Bidan, G., and Teoule, R. (1994) Preparation of a DNA matrix via an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group. Nucleic Acids Res. 22, 2915–2921.

    Article  CAS  Google Scholar 

  13. Livache, T., Bazin, H., Caillat, P., and Roget, A. (1998) Electroconducting polymers for the construction of DNA or peptide arrays on silicon chips. Biosens. Bioelectron. 13, 629–634.

    Article  CAS  Google Scholar 

  14. Wolowacz, S. E., Yon Hin, B. F. Y., and Lowe C. R. (1992) Covalent electropolymerisation of glucose oxydase in polypyrrole. Anal. Chem. 64, 1541–1545.

    Article  CAS  Google Scholar 

  15. Livache, T., Guedon, P., Brakha, C., Roget, A., Levy, Y., and Bidan, G. (2001) Polypyrrole electrospotting for the construction of oligonucleotide arrays compatible with a surface plasmon resonance hybridization detection. Synth. Methods 121(2–3), 1443–1444.

    Article  CAS  Google Scholar 

  16. Haab, B. B., Dunham, M. J., and Brown, P. O. (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2(2), 04.1–4.13.

    Article  Google Scholar 

  17. Templin, M. F., Stoll, D., Schrenk, M., Traub, P. C., Vohringer, C., and Joos, T. O. (2002) Protein microarray technology. Trends Biotechnol. 20, 160–166.

    Article  CAS  Google Scholar 

  18. Parsons, I. D. and Stockley, P. G. (1997) Quantitation of the Escherichia coli methionine repressor-operator interaction by surface plasmon resonance is not affected by the presence of a dextran matrix. Anal. Biochem. 254, 82–87.

    Article  CAS  Google Scholar 

  19. Guedon, P., Livache, T., Martin, F., et al. (2000) Characterization and optimization of a real-time, parallel, label-free, polypyrrole-based DNA sensor by plasmon resonance imaging. Anal. Chem. 72, 6003–6009.

    Article  CAS  Google Scholar 

  20. Jirkowski, I. and Baudy, R. (1981) A facile large scale preparation of 1H-pyrrole-1-ethanamine and syntheses of substituted pyrrolo[1,2-a]pyrazines and hydro derivatives thereof. Synthesis 481-483.

    Google Scholar 

  21. Nelson, B. P., Grimsrud, T. E., Liles, M. R., Goodman, R. M., and Corn, R. M. (2001) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal. Chem. 73, 1–7.

    Article  CAS  Google Scholar 

  22. Da Silva, S., Grosjean, L., Ternan, N., Mailley, P., Livache, T., and Cosnier, S. (2004) Biotinylated polypyrrole films: an easy electrochemical approach for the reagentless immobilization of bacteria on electrode surfaces. Bioelectrochemistry 63, 297–301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Mercey, E., Grosjean, L., Roget, A., Livache, T. (2007). Surface Plasmon Resonance Imaging on Polypyrrole Protein Chips. In: Floriano, P.N. (eds) Microchip-Based Assay Systems. Methods in Molecular Biology™, vol 385. Humana Press. https://doi.org/10.1007/978-1-59745-426-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-426-1_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-588-0

  • Online ISBN: 978-1-59745-426-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics