Skip to main content

The Spot Technique: Synthesis and Screening of Peptide Macroarrays on Cellulose Membranes

  • Protocol
Peptide-Based Drug Design

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 494))

Summary

Peptide arrays are a widely used tool for drug development. For peptide-based drug design it is necessary to screen a large number of peptides. However, there are often difficulties with this approach. Most common peptide synthesis techniques are able to simultaneously synthesize only up to a few hundred single peptides. Spot synthesis is a positionally addressable, multiple synthesis technique offering the possibility of synthesizing and screening up to 10,000 peptides or peptide mixtures on cellulose or other membrane surfaces. In this chapter we present the basic procedures and screening methods related to spot synthesis and outline protocols for easy-to-use detection methods on these peptide arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frank, R. (1992) Spot-synthesis: An easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48, 9217–9232.

    Article  CAS  Google Scholar 

  2. Kramer, A. and Schneider-Mergener, J. (1998) Synthesis and application of peptide libraries bound to continuous cellulose membranes. Methods Mol. Biol. 87, 25–39.

    CAS  PubMed  Google Scholar 

  3. Gausepohl, H. and Behn, C. (2002) Automated synthesis of solid-phase bound peptides. In: Peptide Arrays on Membrane Support, eds. J. Koch and M. Mahler, pp. 55–68. Berlin:Springer-Verlag.

    Google Scholar 

  4. Molina, F., Laune, D., Gougat, C., Pau, B., and Granier, C. (1996) Improved performances of spot multiple peptide synthesis. Peptide Res. 9, 151–155.

    CAS  Google Scholar 

  5. Kramer, A., Reineke, U., Dong, L., et al. (1999) Spot-synthesis:observations and optimizations. J. Peptide Res. 54, 319–327.

    Article  CAS  Google Scholar 

  6. Frank, R. (2002) The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports-principles and applications. J. Immunol. Methods 267, 13–26.

    Article  CAS  PubMed  Google Scholar 

  7. Blackwell, H.E. (2006) Hitting the SPOT: small-molecule macroarrays advance combinatorial synthesis. Curr. Opin. Chem. Biol. 10, 203–212.

    Article  CAS  PubMed  Google Scholar 

  8. Frank, R., Hoffmann, S., Overwin, H., Behn, C., and Gausepohl, H. (1996) Easy preparation of synthetic peptide repertoires for immunological studies utilizing SPOT synthesis. In: Peptides in Immunology, ed. C.H. Schneider, pp. 197–204. New York: John Wiley & Sons, Ltd.

    Google Scholar 

  9. Wenschuh, H., Volkmer-Engert, R., Schmidt, M., Schulz, M., Schneider-Mergener, J., and Reineke, U. (2000) Coherent membrane supports for parallel microsynthesis and screening of bioactive peptides. Biopolymers (Peptide Science) 55, 188–206.

    Article  CAS  Google Scholar 

  10. Reineke, U., Volkmer-Engert, R., and Schneider-Mergener, J. (2001) Applications of peptide arrays prepared by the SPOT-technology. Curr. Opin. Biotechnol. 12, 59–64.

    Article  CAS  PubMed  Google Scholar 

  11. Frank, R. and Schneider-Mergener, J. (2002) SPOT synthesis—scope of applications. In: Peptide Arrays on Membrane Support, eds. J. Koch and M. Mahler, pp 1–22. Berlin Heidelberg:Springer-Verlag.

    Google Scholar 

  12. Hilpert, K., Winkler, D.F.H., and Hancock, R.E.W. (2007) Cellulose-bound peptide arrays: Preparation and applications. Biotechnol. Genetic Eng. Rev. 24, 31–106.

    CAS  Google Scholar 

  13. Reineke, U., Sabat, R., Volk, H.-D., and Schneider-Mergener, J. (1998) Mapping of the interleukin-10/interleukin-10 receptor combining site. Protein Sci. 7, 951–960.

    Article  CAS  PubMed  Google Scholar 

  14. Otvos Jr., L., Pease, A.M., Bokonyi, K., et al. (2000) In situ stimulation of a T helper cell hybrodoma with a cellulose-bound peptide antigen. J. Immunol. Methods 233, 95–1051.

    Article  CAS  PubMed  Google Scholar 

  15. Bräuning, R., Mahler, M., Hügle-Dörr, B., Blüthner, M., Koch, J., and Petersen, G. (2002) Immobilized peptides to study protein-protein interactions—potential and pitfalls. In: Peptide Arrays on Membrane Support, eds. J. Koch and M. Mahler, pp.153–163. Berlin: Springer-Verlag.

    Google Scholar 

  16. Martens, W., Greiser-Wilke, I., Harder, T.C., et al. (1995) Spot synthesis of overlapping peptides on paper membrane supports enables the identification of linear monoclonal antibody binding determinants on morbillivirus phosphoproteins. Vet. Microbiol. 44, 289–298.

    Article  CAS  PubMed  Google Scholar 

  17. Santona, A., Carta, F., Fraghi, P., and Turrini, F. (2002) Mapping antigenic sites of an immunodominant surface lipoprotein of Mycoplasma agalactiae, AvgC, with the use of synthetic peptides. Infect. Immun. 70, 171–176.

    Article  CAS  PubMed  Google Scholar 

  18. Fields, G.B. and Noble, R.L. (1990) Solid phase synthesis utilizing {9-fluorenylmethoxycarbonyl} amino acids. Int. J. Peptide Protein Res. 35, 161–214.

    Article  CAS  Google Scholar 

  19. Zander, N. and Gausepohl, H. (2002) Chemistry of Fmoc peptide synthesis on membranes. In: Peptide Arrays on Membrane Support, eds. J. Koch and M. Mahler, pp. 23–39.Berlin:Springer-Verlag.

    Google Scholar 

  20. Atherton, E. and Sheppard, R.C. (1989) 7.2. Activated esters of Fmoc-amino acids. In: Solid Phase Peptide Synthesis—A Practical Approach, pp.76–78. Oxford: IRL press at Oxford University Press.

    Google Scholar 

  21. Zander, N. (2004) New planar substrates for the in situ synthesis of peptide arrays. Mol. Divers. 8, 189–195.

    Article  CAS  PubMed  Google Scholar 

  22. Ast, T., Heine, N., Germeroth, L., Schneider-Mergener, J., and Wenschuh, H. (1999) Efficient assembly of peptomers on continuous surfaces. Tetrahedron Lett. 40, 4317–4318.

    Article  CAS  Google Scholar 

  23. Weiler, J., Gausepohl, H., Hauser, N., Jensen, O.N., and Hoheisel, J.D. (1997) Hybridisation based DNA screening on peptide nucleic acid (PNA) oligomer arrays. Nucleic Acids Res. 25, 2792–2799.

    Article  CAS  PubMed  Google Scholar 

  24. Hilpert, K., Winkler, D.F.H., and Hancock, R.E.W. (2007) Peptide arrays on cellulose support: SPOT synthesis - a time and cost efficient method for synthesis of large numbers of peptides in a parallel and addressable fashion. Nature Protocols 2, 1333–1349.

    Article  CAS  PubMed  Google Scholar 

  25. Krchnak, V., Wehland, J., Plessmann, U., Dodemont, H., Gerke, V., and Weber, W. (1988) Noninvasive continuous monitoring of solid phase peptide synthesis by acid-base indicator. Collect. Czechoslovak Chem. Commun. 53, 2542–2548.

    Article  CAS  Google Scholar 

  26. Bhargava, S., Licha, K., Knaute, T., et al. (2002) A complete substitutional analysis of VIP for better tumor imaging properties. J. Mol. Recognition 15, 145–153.

    Article  CAS  Google Scholar 

  27. Jung, G. and Beck-Sickinger, A.G. (1992) Multiple peptide synthesis methods and their applications. Angew. Chem. Int. Ed. (English) 31, 367–383.

    Article  Google Scholar 

  28. Geysen, H.M., Meloen, R.H., and Barteling, S.J. (1984) Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci. USA 82, 3998–4002.

    Article  Google Scholar 

  29. Lebl, M. (1999) Parallel personal comments on “classical” papers in combinatorial chemistry. J. Combin. Chem. 1, 3–24.

    Article  CAS  Google Scholar 

  30. Maier, T., Yu, C., Külleritz, G., and Clemens, S. (2003) Localization and functional characterization of metal-binding sites in phytochelatin synthases. Planta 218, 300–308.

    Article  CAS  PubMed  Google Scholar 

  31. Malin, R., Steinbrecher, R., Jannsen, J., et al. (1995) Identification of Technetium-99m binding peptides usingcombinatorial cellulose-bound peptide libraries. J. Am Chem. Soc. 117, 11821–11822.

    Article  CAS  Google Scholar 

  32. Bialek, K., Swistowski, A., and Frank, R. (2003) Epitope-targeted proteome analysis: towards a large-scale automated protein-protein-interaction mapping utilizing synthetic peptide arrays. Anal. Bioanal. Chem. 376, 1006–1013.

    Article  CAS  PubMed  Google Scholar 

  33. Buss, H., Dörrie, A., Schmitz, M.L., et al. (2004) Phosphorylation of serine 468 by GSK-3β negatively regulates basal p65 NF-γB activity. J. Biol. Chem.279, 49571–49574.

    Google Scholar 

  34. Schutkowski, M., Reineke, U., and Reimer, U. (2005) Peptide arrays for kinase profiling. ChemBioChem 6, 513–521.

    Article  CAS  PubMed  Google Scholar 

  35. Hilpert, K., Elliott, M.R., Volkmer-Engert, R., et al. (2006) Sequence requirements and an optimization strategy for short antimicrobial peptides. Chem. Biol. 13, 1101–1107.

    Article  CAS  PubMed  Google Scholar 

  36. Piossek, C., Thierauch, K.-H., Schneider-Mergener, J., et al. (2003) Potent inhibition of angiogenesis by D, L-peptides derived from vascular endothelial growth factor receptor 2. Thromb Haemost. 90, 501–510.

    CAS  PubMed  Google Scholar 

  37. Grogan, J.L., Kramer, A., Nogai, A., et al. (1999) Cross-reactivity of myelin basic protein-specific T cells with multiple microbial peptides: Experimental autoimmune encephalomyelitis induction in TCR transgenic mice. J. Immunol. 163, 3764–3770.

    CAS  PubMed  Google Scholar 

  38. Frese, S., Schubert, W.-D., Findeis, A.C., et al. (2006) The phosphotyrosine peptide binding specificity of Nck1 and Nck2 SH2 domains. J. Biol. Chem. 281, 18236–18245.

    Article  CAS  PubMed  Google Scholar 

  39. Jobron, L. and Hummel, G. (2000) Solid-phase synthesis of unprotected N-glycopeptide building blocks for SPOT synthesis of glycopeptides. Angew. Chem. Intl Ed. 39, 1621–1624.

    Google Scholar 

  40. Zimmermann, J., Kühne, R., Volkmer-Engert, R., et al. (2003) Design of N-substituted peptomer ligands for EVH1 domains. J. Biol. Chem. 278, 36810–36818.

    Google Scholar 

  41. Hahn, M., Winkler, D., Welfle, K., et al. (2001) Cross-reactive binding of cyclic peptides to an anti-TGFα antibody Fab fragment. An X-ray structural and thermodynamic analysis. J. Mol. Biol. 314, 293–309.

    Article  CAS  PubMed  Google Scholar 

  42. Welschof, M., Reineke, U., Kleist, C., et al. (1999) The antigen binding domain of non-idiotypic human anti-F(ab′)2 autoantibodies: Study of their interaction with IgG hinge region epitopes. Human Immunol. 60, 282–290.

    Article  CAS  Google Scholar 

  43. Reineke, U., Kramer, A., and Schneider-Mergener, J. (1999) Antigen sequence- and library-based mapping of linear and discontinuous protein-protein interaction sites. Curr. Topics Microbiol. Immunol. 243, 23–36.

    CAS  Google Scholar 

  44. Reineke, U., Ehrhard, B., Sabat, R., Volk, H.-D., and Schneider-Mergener, J. (1998) Novel strategies for the mapping of discontinuous epitopes using cellulose-bound peptide and hybritope scans. In: Peptides 1996: Proceedings of the 24th European Peptide Symposium, eds. R. Ramage and R. Epton, pp.751–752. Kingswinford: Mayflower Scientific Ltd.

    Google Scholar 

  45. Reineke, U., Sabat, R., Kramer, A., et al. (1996) Mapping protein-protein contact sites using cellulose-bound peptide scans. Mol. Divers. 1, 141–148.

    Google Scholar 

  46. Reineke, U., Sabat, R., Hoffmüller, U., et al. (2002) Identification of miniproteins using cellulose-bound duotope scans. In: Peptides for the New Millenium. Proceedings of the 16th American Peptide Symposium, eds. G.B. Fields, J.P. Tam, and G. Barany, pp. 167–169. Springer Netherlands.

    Google Scholar 

  47. Kramer, A., Stigler, R.-D., Knaute, T., Hoffmann, B., and Schneider-Mergener, J. (1998) Stepwise transformation of a cholera toxin an a p24 (HIV-1) epitope into D-peptide analogs. Protein Eng. 11, 941–948.

    Article  CAS  PubMed  Google Scholar 

  48. Oggero, M., Frank, R., Etcheverrigaray, M., and Kratje, R. (2004) Defining the antigenic structure of human GM-CSF and its implications for the receptor interaction and therapeutic treatments. Mol. Divers. 8, 257–269.

    Article  CAS  PubMed  Google Scholar 

  49. Kramer, A., Keitel, T., Winkler, K., Stöcklein, W., Höhne, W., and Schneider-Mergener, J. (1997) Molecular basis for the binding promiscuity of an anti-p24 (HIV-1) monoclonal antibody. Cell 91, 799–809.

    Google Scholar 

  50. Bolger, G.B., Baillie, G.S., Li, X., et al. (2006) Scanning peptide array analyses identify overlapping binding sites for the signaling scaffold proteins, β-arrestin and RACK1 in the cAMP-specific phosphodiesterase, PDE4D5. Biochem. J. 398, 23–36.

    Article  CAS  PubMed  Google Scholar 

  51. Liang, M., Mahler, M., Koch, J., et al. (2003) Generation of an HFRS patient-derived neutralizing recombinant antibody to Hantaan virus G1 protein and definition of the neutralizing domain. J. Med. Virol. 69, 99–107.

    Article  CAS  PubMed  Google Scholar 

  52. Espaniel, X. and Sudol, M. (2001) Yes-associated protein and p53-binding protein-2 interact through their WW and SH3 domains. J. Biol. Chem. 276, 14514–14523.

    Google Scholar 

  53. Houghten, R.A., Pinilla, C., Blondelle, S.E., Appel, J.R., Dooley, C.T., and Cuervo, J.H. (1991) Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354, 84–86.

    Article  CAS  PubMed  Google Scholar 

  54. Tegge, W., Frank, R., Hofmann, F., and Dostmann, R.G. (1995) Determination of cyclic nucleotide-dependent protein kinase substrate specificity by the use of peptide libraries on cellulose paper. Biochemistry 34, 10569–10577.

    Article  CAS  PubMed  Google Scholar 

  55. Heine, N., Ast, T., Schneider-Mergener, J., Reineke, U., Germeroth, L., and Wenschuh, H. (2003) Synthesis and screening of peptoid arrays on cellulose membranes. Tetrahedron 59, 9919–9930.

    Article  CAS  Google Scholar 

  56. Frank, R., Kiess, M., Lahmann, H., Behn, C., and Gausepohl, H. (1995) Combinatorial synthesis on membrane supports by the SPOT technique. In: Peptides 1994: Proceedings of the 23rd European Peptide Symposium, ed. H.L.S. Maia, pp. 479–480. Leiden: ESCOM.

    Google Scholar 

  57. Frank, R. (1995) Simultaneous and combinatorial chemical synthesis techniques for the generation and screening of molecular diversity. J. Biotechnol. 41, 259–272.

    Google Scholar 

  58. Schneider-Mergener, J., Kramer, A., and Reineke, U. (1996) Peptide libraries bound to continuous cellulose membranes: tools to study molecular recognition. In: Combinatorial Libraries: Synthesis,Screening and Application Potential, ed. R. Cortese. New York: Walter de Gruyter.

    Google Scholar 

  59. Frank, R. and Overwin, H. (1996) SPOT synthesis. Epitope analysis with arrays of synthetic peptides prepared on cellulose membranes. In: Epitope Mapping Protocols, ed. G.E. Morris, pp. 149–169. Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  60. Kramer, A., Vakalopoulou, E., Schleuning, W.-D., and Schneider-Mergener, J. (1995) A general route to fingerprint analyses of peptide-antibody interactions using a clustered amino acid peptide library: comparison with a phage display library. Mol. Immunol. 32, 459–465.

    Article  CAS  PubMed  Google Scholar 

  61. Reineke, U., Ivascu, C., Schlief, M., et al. (2002) Identification of distinct antibody epitopes and mimotopes from a peptide array of 5520 randomly generated sequences. J. Immunol. Methods 267, 37–51.

    Google Scholar 

  62. Pulli, T., Lankinen, H., Roivainen, M., and Hyypiä, T. (1998) Antigenic sites of coxsackievirus A9. Virology 240, 202–212.

    Article  CAS  PubMed  Google Scholar 

  63. Mahler, M., Kessenbrock, K., Raats, J., Williams, R., Fritzler, M.J., and Blüthner, M. (2003) Characterization of the human autoimmune response to the major C-terminal epitope of the ribosomal P proteins. J. Mol. Med. 81, 194–204.

    CAS  PubMed  Google Scholar 

  64. Winkler, D., Stigler, R.-D., Hellwig, J., Hoffmann, B., and Schneider-Mergener, J. (1996) Determination of the binding conformation of peptide epitopes using cyclic peptide libraries. In: Peptides: Chemistry,Structure and Biology: Proceedings of the 14th American Peptide Symposium, eds. P.T.P. Kaumaya and R.S. Hodges, pp. 315–316. Kingswinford: Mayflower Scientific Ltd.

    Google Scholar 

  65. Kamradt, T. and Volkmer-Engert, R. (2004) Cross-reactivity of T lymphocytes in infection and autoimmunity. Mol. Divers. 8, 271–280.

    Article  CAS  PubMed  Google Scholar 

  66. Boisguerin, P., Leben, R., Ay, B., et al. (2004) An improved method for the synthesis of cellulose membrane-bound peptides with free C termini is useful for the PDZ domain binding studies. Chem. Biol. 11, 449–459.

    Article  CAS  PubMed  Google Scholar 

  67. Volkmer-Engert, R., Hoffmann, B., and Schneider-Mergener, J. (1997) Stable attachment of the HMB-linker to continuous cellulose membranes for parallel solid phase spot synthesis. Tetrahedron Lett. 38, 1029–1032.

    Article  CAS  Google Scholar 

  68. Scharn, D., Wenschuh, H., Reineke, U., Schneider-Mergener, J., and Germeroth, L. (2000) Spatially addressed synthesis of amino- and amino-oxy-substituted 1,3,5-triazine arrays on polymeric membranes. J. Combin. Chem. 2, 361–369.

    Article  CAS  Google Scholar 

  69. Przezdziak, J., Tremmel, S., Kretzschmar, I., Beyermann, M., Bienert, M., and Volkmer-Engert, R. (2006) Probing the ligand-binding specificity and analyzing the folding state of SPOT-synthesized FBP28 WW domain variants. ChemBioChem 7, 780–788.

    Article  CAS  PubMed  Google Scholar 

  70. Toepert, F., Pires, J.R., Landgraf, C., Oschkinat, H., and Schneider-Mergener, J. (2001) Synthesis of an array comprising 837 variants of the hYAP WW protein domain. Angew. Chem. Int. Ed. 40, 897–900.

    Article  CAS  Google Scholar 

  71. Münch, G., Schicktanz, D., Behme, A., et al. (1999) Amino acid specificity of glycation and protein-AGE crosslinking reactivities determined with a dipeptide SPOT library. Nature Biotechnol. 17, 1006–1010.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Winkler, D.F., Campbell, W.D. (2008). The Spot Technique: Synthesis and Screening of Peptide Macroarrays on Cellulose Membranes. In: Otvos, L. (eds) Peptide-Based Drug Design. Methods In Molecular Biology™, vol 494. Humana Press. https://doi.org/10.1007/978-1-59745-419-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-419-3_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-990-1

  • Online ISBN: 978-1-59745-419-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics