Skip to main content

Production of Recombinant Proteins in Suspension–Cultured Plant Cells

  • Protocol
Recombinant Proteins From Plants

Summary

Plants have emerged in the past decade as a suitable alternative to the current production systems for recombinant pharmaceutical proteins and, today their potential for low-cost production of high quality, much safer and biologically active mammalian proteins is largely documented.

Among various plant expression systems being explored, genetically modified suspension-cultured plant cells offer a promising system for production of biopharmaceuticals. Indeed, when compared to other plant-based production platforms that have been explored, suspension-cultured plant cells have the advantage of being totally devoid of problems associated with the vagaries of weather, pest, soil and gene flow in the environment. Because of short growth cycles, the timescale needed for the production of recombinant proteins in plant cell culture can be counted in days or weeks after transformation compared to months needed for the production in transgenic plants. Moreover, recovery and purification of recombinant proteins from plant biomass is an expensive and technically challenging business that may amount to 80–94% of the final product cost. One additional advantage of plant cell culture is that the recombinant protein fused with a signal sequence can be expressed and secreted into the culture medium, and therefore recovered and purified in the absence of large quantities of contaminating proteins. Consequently, the downstream processing of proteins extracted from plant cell culture medium is less expensive, which may/does balance the higher costs of fermentation. When needed for clinical use, recombinant proteins are easily produced in suspension-cultured plant cells under certified, controllable and sterile conditions that offer improved safety and provide advantages for good manufacturing practices and regulatory compliance.

In this chapter, we present basic protocols for rapid generation of transgenic suspension-cultured cells of Nicotiana tabacum, Oriza sativa and Arabidopis thaliana. These systems are powerful tools for plant-made pharmaceuticals production in highly controlled conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gomord, V., Sourrouille, C., Fitchette, A.C., Bardor, M., Pagny, S., Lerouge, P., and Faye, L. (2004) Production and glyco-sylation of plant made pharmaceuticals: the antibodies as a challenge. Plant Biotechnol. J. 2, 83–100.

    Article  CAS  PubMed  Google Scholar 

  2. Ma, J.K., Chikwamba, R., Sparrow, P., Fischer, R., Mahoney, R., and Twyman, R.M. (2005) Plant-derived pharmaceuti-cals—the road forward. Trends Plant Sci. 10, 580–585.

    Article  CAS  PubMed  Google Scholar 

  3. Ko, K., and Koprowski, H. (2005) Plant biopharming of monoclonal antibodies. Virus Res. 111, 93–100.

    Article  CAS  PubMed  Google Scholar 

  4. Schillberg, S., Twyman, R.M., and Fischer, R. (2005) Opportunities for recombinant antigen and antibody expression in trans-genic plants—technology assessment. Vaccine. 23, 1764–1769.

    Article  CAS  PubMed  Google Scholar 

  5. Gomord, V., Chamberlain, P., Jefferis, R., and Faye, L. (2005) Biopharmaceutical production in plants: problems, solutions and opportunities. Trends Biotechnol. 23, 559–565.

    Article  CAS  PubMed  Google Scholar 

  6. Faye, L., and Daniell, H. (2006) Pathway and freeways for protein import in the higher plant chloroplasts. Plant Biotechnol. J. 4, 275–279.

    Article  CAS  PubMed  Google Scholar 

  7. Sethuraman, N., and Stadheim, T.A. (2006) Challenges in therapeutic glycoprotein production. Curr. Opin. Biotechnol. 17, 341–346.

    Article  CAS  PubMed  Google Scholar 

  8. Gomord, V., and Faye, L. (2004) Post-translational modifications of therapeutic proteins in plants. Curr. Opin. Plant Biol. 7, 171–181.

    Article  CAS  PubMed  Google Scholar 

  9. Walsh, G., and Jefferis, R. (2006) Post-translational modifications in the context of therapeutic proteins. Nat. Biotechnol. 24, 1241–1252.

    Article  CAS  PubMed  Google Scholar 

  10. Merle, C., Perret, S., Lacour, T., Jonval, V., Hudaverdian, S., Garrone, R., Ruggiero, F., and Theisen, M. (2002) Hydroxylated human homotrimeric collagen I in Agro-bacterium tumefaciens-mediated transient expression and in transgenic tobacco plant. FEBS Lett. 515, 114–118.

    Article  CAS  PubMed  Google Scholar 

  11. Theisen, M. (1999) Production of recom-binant blood factors in transgenic plants. Adv. Exp. Med. Biol. 464, 211–220.

    CAS  PubMed  Google Scholar 

  12. Ma, J.K.C., Hiatt, A., Hain, M., Vine, N.D., Wang, F., Stabila, P., van Dolleweerd, C., Mostov, K., and Lherner, T. (1995) Generation and assembly of secretory antibodies in plants. Science 268, 716–719.

    Article  CAS  PubMed  Google Scholar 

  13. Kieran, P.M., MacLoughlin, P. F., and Malone, D.M. (1997) Plant cell suspension cultures: some engineering considerations. J. Biotechnol. 59, 39–52.

    Article  CAS  PubMed  Google Scholar 

  14. Fischer, R., Emans, N., Schuster, F., Hellwig, S., and Drossard, J. (1999) Towards molecular farming in the future: using plant-cell-suspension cultures as bioreactors. Bio-technol. Appl. Biochem. 30, 109–12.

    CAS  Google Scholar 

  15. Doran, P.M. (2000) Foreign protein production in plant tissue cultures. Curr. Opin. Biotechnol. 11, 199–204.

    Article  CAS  PubMed  Google Scholar 

  16. Honda, G., Sakakibara, F., Yazaki, K., and Tabata, M. (1988) Isolation of deoxy-shikonin, an antidermatophytic principle from Lithospermum erythrorhizon cell cultures. J. Nat. Prod. 51, 152–154.

    Article  CAS  PubMed  Google Scholar 

  17. Drapeau, D., Sauvaire, Y., Blanch, H.W., and Wilke, C.R. (1986) Improvement of dios-genin yield from Dioscorea deltoidea plant cell cultures by use of a non-traditional hydrolysis method. Planta Med. 52, 474–478.

    Article  Google Scholar 

  18. Seki, M., Ohzora, C., Takeda, M., and Furusaki, S. (2000) Taxol (paclitaxel) production using free and immobilized cells of Taxus cuspidate. Biotechnol. Bioeng. 53, 214–219.

    Article  Google Scholar 

  19. Sijmons, P.C., Dekker, B.M., Schrammeijer, B., Verwoerd, T.C., van den Elzen, P.J., and Hoekema, A. (1990) Production of correctly processed serum albumin in trans-genic plants. Bio/Technology. 8, 217–221.

    Article  CAS  PubMed  Google Scholar 

  20. Fischer, R., and Emans, N. (2000) Molecular farming of pharmaceutical proteins. Transgenic Res. 9, 279–99.

    Article  CAS  PubMed  Google Scholar 

  21. Kusnadi, A.R., Nikolov, Z.L., and Howard, J.A. (2000) Production of recombinant proteins in transgenic plants: practical considerations. Biotechnol. Bioeng. 56, 473–484.

    Article  Google Scholar 

  22. Evangelista, R.L., Kusnadi, A.R., Howard, J.A., and Nikolov, Z.L. (1998) Process and economic evaluation of the extraction and purification of recombinant β -glucuronidase from transgenic corn. Biotechnol. Prog. 14, 607–614.

    Article  CAS  PubMed  Google Scholar 

  23. Firek, S., Draper, J., Owen, M.R.L., Gandecha, A., Cockburn, B., and Whitelam, G.C. (1993) Secretion of a functional single-chain Fv protein in transgenic tobacco plants and cell suspension cultures. Plant Mol. Biol. 23, 861–870.

    Article  CAS  PubMed  Google Scholar 

  24. Magnuson, N.S., Linzmaier, P.M., Reeves, R., An, G., HayGlass, K., and Lee, J.M. (1998) Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture. Protein Expr. Purif. 13, 45–52.

    Article  CAS  PubMed  Google Scholar 

  25. James, E.A., Wang, C., Wang, Z., Reeves, R., Shin, J.H., Magnuson, N.S., and Lee, J.M. (2000) Production and characterization of biologically active human GM-CSF secreted by genetically modified plant cells. Protein Expr. Purif. 19, 131–138.

    Article  CAS  PubMed  Google Scholar 

  26. Kwon, T.H., Seo, J.E., Kim, J., Lee, J.H., Jang, Y.S., and Yang, M.S. (2003) Expression and secretion of the heterodimeric protein interleukin-12 in plant cell suspension culture. Biotechnol. Bioeng. 81, 870–875.

    Article  CAS  PubMed  Google Scholar 

  27. Sunil Kumar, G.B., Ganapathi, T.R., Revathi, C.J., Prasad, K.S., and Bapat, V.A. (2003) Expression of hepatitis B surface antigen in tobacco cell suspension cultures. Protein Expr. Purif. 32, 10–17.

    Article  CAS  PubMed  Google Scholar 

  28. Reggi, S., Marchetti, S., Patti, T., De Ami- cis, F., Cariati, R., Bembi, B., and Fogher, C. (2005) Recombinant human acid beta-glucosidase stored in tobacco seed is stable, active and taken up by human fibroblasts. Plant Mol. Biol. 57, 101–113.

    Article  CAS  PubMed  Google Scholar 

  29. Cramer, C.L., Weissenborn, D.L., Oishi, K.K., Grabau, E.A., Bennett, S., Ponce, E., Grabowski, G.A., and Radin, D.N. (1996) Bioproduction of human enzymes in trans-genic tobacco. Ann. NY Acad. Sci. 792, 62–71.

    Article  CAS  PubMed  Google Scholar 

  30. Lienard, D., Tran Dinh, O., van Oort, E., Van Overtvelt, L., Bonneau, C., Wambre, E., Bardor, M., Cosette, P., Didier-Laurent, A., de Borne, F.D., Delon, R., van Ree, R., Moingeon, P., Faye, L., and Gomord, V. (2007) Suspension-cultured BY-2 tobacco cells produce and mature immunologically active house dust mite allergens. Plant Bio-technol. J. 5, 93–108.

    Article  CAS  Google Scholar 

  31. Nebenfuhr, A., Gallagher, L.A., Dunahay, T.G., Frohlick, J.A., Mazurkiewicz, A.M., Meehl, J.B., and Staehelin, L.A. (1999) Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol. 121, 1127–42.

    Article  CAS  PubMed  Google Scholar 

  32. Jefferson, R.A., Burgess, S.M., and Hirsch, D. (1986) P-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc. Natl. Acad. Sci. USA. 83, 8447–8451.

    Article  CAS  PubMed  Google Scholar 

  33. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987) GUS fusions: P-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907.

    CAS  PubMed  Google Scholar 

  34. Hooykaas, P.J.J., and Schilperoort, R.A. (1992) Agrobacterium and plant genetic engineering. Plant Mol. Biol. 19, 15–38.

    Article  CAS  PubMed  Google Scholar 

  35. Pagny, S., Bouissonnié, F., Sarkar, M., Fol- let-Gueye, M.L., Driouich, A., Schachter, H., Faye, L., and Gomord, V. (2003) Structural requirements for Arabidopsis beta 1,2 xylosyltransferase activity and targeting to the Golgi. Plant J. 33, 189–203.

    Article  CAS  PubMed  Google Scholar 

  36. Laemmli, U. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  37. Towbin, H., Staehelin, T., and Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA. 76, 4350–4354.

    Article  CAS  PubMed  Google Scholar 

  38. Höfgen, R., and Willmitzer, L. (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 16, 9877.

    Article  PubMed  Google Scholar 

  39. Hiei, Y., Komari, T., and Kubo, T. (1997) Transformation of rice mediated by Agro-bacterium tumefaciens. Plant Mol. Biol. 35, 205–218.

    Article  CAS  PubMed  Google Scholar 

  40. Hoque, M.E., Mansfield, J.W., and Bennett, M.H. (2005) Agrobacterium -mediated transformation of Indica rice genotypes: an assessment of factors affecting the transformation efficiency. Plant Cell Tiss. Organ Cult. 82, 45–55.

    Article  CAS  Google Scholar 

  41. Faye, L., Gomord, V., Lainé, A.-C., and Chrispeels, M.J. (1993) Affinity purification of antibodies specific for Asn-linked glycans containing a l,3 fucose or β l,2 xylose. Anal. Biochem. 209, 104–108.

    Article  CAS  PubMed  Google Scholar 

  42. Saint-Jore-Dupas, C., Nebenführ, A., Bou- laflous, A., Follet-Gueye, M.L., Plasson, C., Hawes, C., Driouich, A., Faye, L., and Gomord, V. (2006) Plant N- glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway. Plant Cell. 18, 3182–3200.

    Article  Google Scholar 

  43. Gomord, V., Denmat, L.A., Fitchette-Lainé, A.-C., Satiat-Jeunemaitre, B., Hawes, C., and Faye, L. (1997) The C-terminal HDEL sequence is sufficient for retention of secretory proteins in the endoplasmic reticulum but promotes vacuolar targeting of proteins that escape the endoplasmic reticulum. Plant J. 11, 101–103.

    Article  Google Scholar 

  44. Downing, W.L., Galpin, J.D., Clemens, S., Lauzon, S.M., Samuels, A.L., Pidkowich, M.S., Lorne Clarke, A., and Kermode, A.R. (2006) Synthesis of enzymatically active human a - l -iduronidase in Arabidopsis cgl (complex glycan-deficient) seeds. Plant Bio-technol. J. 4, 169–181.

    Article  CAS  Google Scholar 

  45. Tyagi, A.K., and Mohanty, A.K. (2000) Rice transformation for crop improvement and functional genomics. Plant Sci. 158, 1–18.

    Article  CAS  PubMed  Google Scholar 

  46. Huang, L.F., Liu, Y.K., Lu, C.A., Hsieh, S.L., and Yu, S.M. (2005) Production of human serum albumin by sugar starvation induced promoter and rice cell culture. Transgenic Res. 14, 569–581.

    Article  CAS  PubMed  Google Scholar 

  47. Takaiwa, F., Takagi, H., Hirose, S., and Wakasa, Y. (2007) Endosperm tissue is good production platform for artificial recom- binant proteins in transgenic rice. Plant Bio-technol. J. 5, 84–92

    Article  CAS  Google Scholar 

  48. Enfors, S.O. (1992) Control of in vivo pro- teolysis in the production of recombinant proteins. Trends Biotechnol. 10, 310–315.

    Article  CAS  PubMed  Google Scholar 

  49. Shin, Y.J., Hong, S.Y., Kwon, T.H., Jang, Y.S., and Yang, M.S. (2003) High level of expression of recombinant human granulo-cyte-macrophage colony stimulating factor in transgenic rice cell suspension culture. Biotechnol. Bioeng. 82, 778–783.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work on plant-made pharmaceuticals at the University of Rouen was supported by the Centre National de la Recherche Scientifique (CNRS) and by the “Ministère de la Recherche”. This study was also partially supported by a grant from the “laboratoire P. Fabre”, France. We thank present and former colleagues who contributed to the work described in this review and we also thank L. Faye and A.-C. Fitchette for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Plasson, C. et al. (2009). Production of Recombinant Proteins in Suspension–Cultured Plant Cells. In: Faye, L., Gomord, V. (eds) Recombinant Proteins From Plants. Methods in Molecular Biology™, vol 483. Humana Press. https://doi.org/10.1007/978-1-59745-407-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-407-0_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-978-9

  • Online ISBN: 978-1-59745-407-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics