Skip to main content

Physcomitrella patens : A Non-Vascular Plant for Recombinant Protein Production

  • Protocol
Recombinant Proteins From Plants

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 483))

Summary

The moss Physcomitrella patens is a long-standing model for studying plant development, growth and cell differentiation in particular. Interest in this non-vascular plant arose following the discovery that homologous recombination is an efficient process. P. patens is, therefore, a tool of choice not only to study gene function but also for recombinant protein production. This system has many attributes that are advantageous for molecular farming: protein production in cell suspension, the possibility of generating targeted knockout mutants for glycoengineering and quantitative optimization for protein production. In terms of technical advances, P. patens is one of the most up-to-date plant expression systems and is a promising alternative to animal cell factories for the production of therapeutic proteins with either simple or highly complex structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischer, R., Twyman, R. M., and Schillberg, S. (2003) Production of antibodies in plants and their use for global health. Vaccine 21, 820–825.

    Article  CAS  PubMed  Google Scholar 

  2. Koprivova, A., Stemmer, C., Altmann, F., Hoffmann, A., Kopriva, S., Gorr, G., Reski, R., and Decker, E. L. (2004) Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans. Plant Bio-technol. J. 2, 517–523.

    Article  CAS  Google Scholar 

  3. Schaefer, D., Zryd, J. P., Knight, C. D., and Cove, D. J. (1991) Stable transformation of the moss Physcomitrella patens. Mol. Gen. Genet. 226, 418–424.

    CAS  PubMed  Google Scholar 

  4. Schaefer, D. G., and Zryd, J. P. (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J. 11, 1195–1206.

    Article  CAS  PubMed  Google Scholar 

  5. Cove, D. (2005) The moss Physcomitrella patens. Annu. Rev. Genet. 39, 339–358.

    Article  CAS  PubMed  Google Scholar 

  6. Vietor, R., Loutelier, B. C., Fitchette, A., Margerie, P., Gonneau, M., Faye, L., and Lerouge, P. (2003) Protein N-glycosylation is similar in the moss Physcomitrella patens and in higher plants. Planta 218, 269–275.

    Article  CAS  PubMed  Google Scholar 

  7. Gomord, V., and Faye, L. (2004) Posttranslational modification of therapeutic proteins in plants. Curr. Opin. Plant Biol. 7, 171–181.

    Article  CAS  PubMed  Google Scholar 

  8. Gomord, V., Chamberlain, P., Jefferis, R., and Faye, L. (2005) Biopharmaceutical production in plants: problems, solutions and opportunities. Trends Biotechnol. 23, 559–565.

    Article  CAS  PubMed  Google Scholar 

  9. Capecchi, M. R. (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat. Rev. Genet. 6, 507–512.

    Article  CAS  PubMed  Google Scholar 

  10. Schaefer, D. G. (2001) Gene targeting in Physcomitrella patens. Curr. Opin. Plant Biol. 4, 143–150.

    Article  CAS  PubMed  Google Scholar 

  11. Schaefer, D. G., and Zryd, J. P. (2001) The moss Physcomitrella patens, now and then. Plant Physiol. 127, 1430–1438.

    Article  CAS  PubMed  Google Scholar 

  12. Trouiller, B., Schaefer, D. G., Charlot, F., and Nogue, F. (2006) MSH2 is essential for the preservation of genome integrity and prevents homeologous recombination in the moss Physcomitrella patens. Nucleic Acids Res. 34, 232–242.

    Article  CAS  PubMed  Google Scholar 

  13. Sauer, B. (1993) Manipulation of transgenes by site-specific recombination: use of Cre recombinase. Methods Enzymol. 225, 890–900.

    Article  CAS  PubMed  Google Scholar 

  14. Weise, A., Altmann, F., Rodriguez-Franco, M., Sjoberg, E., Baumer, W., Launhardt, H., Kietzmann, M., and Gorr, G. (2007) High-level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella delta-fuc-t & delta-xyl-t mutant. Plant Biotechnol. J. 5, 389–401.

    Article  CAS  PubMed  Google Scholar 

  15. Ashton, N. W., Cove, D. J., and Featherstone, D. R. (1979) Isolation and physiological analysis of mutants of the moss, Physcomitrella-patens, which over-produce gametophores. Planta 144, 437–442.

    Article  CAS  Google Scholar 

  16. Albert, H., Dale, E. C., Lee, E., and Ow, D. W. (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J. 7, 649–659.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Liénard, D., Nogué, F. (2009). Physcomitrella patens : A Non-Vascular Plant for Recombinant Protein Production. In: Faye, L., Gomord, V. (eds) Recombinant Proteins From Plants. Methods in Molecular Biology™, vol 483. Humana Press. https://doi.org/10.1007/978-1-59745-407-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-407-0_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-978-9

  • Online ISBN: 978-1-59745-407-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics