Skip to main content

Production of Plantibodies in Nicotiana Plants

  • Protocol
Recombinant Proteins From Plants

Summary

Because of the wide use and high demand in medicine, monoclonal antibodies are among the main recombinant pharmaceuticals at present, although present limitations of the productive platforms for monoclonal antibodies are driving the improvement of the large-scale technologies and the development of alternative expression systems. This has drawn the attention on plants as expression system for monoclonal antibodies and related derivatives, owning the capacity of plants to properly express and process eukaryotic proteins with biological activity resembling that of the natural proteins. In this chapter, the procedures from the isolation of the monoclonal antibody genes to the biochemical and biological characterization of the plant-expressed monoclonal antibody are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lawrence, S. (2006) Biotech blockbusters consolidate markets. Nat. Biotechnol. 24 (12), 1466.

    Article  CAS  PubMed  Google Scholar 

  2. Lawrence, S. (2007) Billion dollar babies — Biotech drugs as blockbusters. Nat. Bio-technol. 25 (4), 380–382.

    Article  CAS  Google Scholar 

  3. Sannes, L., Branca, M. (2006) The evolving market for monoclonal antibodies: Facing new opportunities and pitfalls. PharmaWeek http: // www.pharmaweek.com/Exclusive_ Content/2_23.asp

  4. Hood, E., Woodard, S.L., Horn, M.E. (2002) Monoclonal antibody manufacturing in transgenic plants — Myths and realities. Curr. Opin. Biotechnol. 13, 630–635.

    Article  CAS  PubMed  Google Scholar 

  5. Pujol, M., Ayala, M., Borroto, C. (2005) State of plant-made pharmaceuticals sector 2005: Setting healthy roots. Biotecnología Aplicada 22 (1), 59–60.

    Google Scholar 

  6. Raskin, I., Ribnicky, D.M., Komarnytsky, S., Ilic, N., Poulev, A., Borisjuk, N., Brinker, A., Moreno, D.A., Ripoll, C., Yakoby, N., O'Neal, J.M., Cornwell, T., Pastor, I., Fri-dlender, B. (2002) Plants and human health in the twenty-first century. Trends Biotech-nol. 20 (12), 522–530.

    Article  CAS  Google Scholar 

  7. Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 15, 473–497.

    Article  CAS  Google Scholar 

  8. Rodríguez, M., Ramírez, N., Ayala, M., Freyre, F., Pérez, L., Triguero, A., Mateo, C., Selman-Housein, G., Gavilondo, J. V., Pujol, M. (2005) Transient expression in tobacco leaves of an aglycosilated recom-binant antibody against the epidermal growth factor receptor. Biotechnol. Bioeng. 89, 188–194.

    Article  PubMed  Google Scholar 

  9. Chomczynski, P. (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15, 532–537.

    CAS  PubMed  Google Scholar 

  10. Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular Cloning. A Laboratory Manual. 2 nd ed. ColdSpring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  11. López, A., Zaldú Z., Pimentel, E., García, M., García, R., Mena, J., Morán, R., Selman, G. (1996) Modification of sporamin gene from sweet potato with a synthetic DNA fragment. Nucleotide sequence and expression in herichia coli iotecnología Apli-cada 13, 265–270.

    Google Scholar 

  12. Schillberg, S., Emans, N., Fischer, R. (2002) Antibody molecular farming in plants and plant cells. Photochem. Rev. 1, 45–54.

    Article  CAS  Google Scholar 

  13. Fischer, R., Twyman, R.M., Schillberg, S. (2003) Production de antibodies in plants and use for global health. Vaccine 21, 820–825.

    Article  CAS  PubMed  Google Scholar 

  14. Deblaere, R., Bytebier, B., De Greve, H., Deboeck, F., Schell, J., Van Montagu, M., Leemans, J. (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucl. Acids Res. 13, 4777–4788.

    Article  CAS  PubMed  Google Scholar 

  15. Hellens, R.P., Mullineaux, P.M., Klee, H. (2000) Technical Focus: A guide to Agrobacterium binary Ti vectors. Trends Plant Sci. 5, 446–451.

    Article  CAS  PubMed  Google Scholar 

  16. Hajdukiewicz, P., Svab, Z., Maliga, P. (1994) The small, versatile pPZP family of Agrobac-terium binary vectors for plant transformation. Plant Mol. Biol. 25, 989–994.

    Article  CAS  PubMed  Google Scholar 

  17. Fuentes, A., Ramos, P., Ayra, C., Rodríguez, M., Ramírez, N., Pujol, M. (2004) Development of a highly efficient system for assessing recombinant gene expression in plant cell suspensions via Agrobacterium tumefa-ciens transformation. Biotechnol. Appl. Bio-chem. 39, 355–361.

    CAS  Google Scholar 

  18. Yang, H., Morita, A., Matsubayashi, Y., Naka-mura, K., Sakagami, Y. (2000) A rapid and efficient system of Agrobacterium infection-mediated transient gene expression in rice Oc cells and its application for analysis of the expression of preprophytosulfokine, a precursor of phytosulfokine-a, encoded by OsPSK gene. Plant Cell Physiol. 41, 814–816.

    Google Scholar 

  19. Dafhnis, F., Trujillo, L., Arrieta, J., Fuentes, A., Ramos, P., Quintero, O., García, B.M., Hernández, L. (2000) Recombinant expression of active Penicillium minioluteum endodextranase in alternative hosts. J. Bio-chem. Mol. Biol. Biophys. 4, 1–7.

    CAS  Google Scholar 

  20. Vaquero, C., Sack, M., Chandler, J., Dros-sard, J., Schuster, F., Monecke, M., Schill-berg, S., Fischer, R. (1999) Transient expression of a tumor-specific single-chain fragment and a chimeric antibody in tobacco leaves. Proc. Natl. Acad. Sci. U S A. 96, 11128–11133.

    Article  CAS  PubMed  Google Scholar 

  21. Yang, Y., Li, R., Qi, M. (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J. 22, 543–551.

    Article  CAS  PubMed  Google Scholar 

  22. Gleba, Y., Marillonnet, S., Klimynk, V. (2004) Engineering viral expression vectors for plants: The “full virus” and the “deconstructed virus” strategies. Curr. Opin. Plant Biol. 7, 182–188.

    Article  CAS  PubMed  Google Scholar 

  23. Sanford, J.C., Smith, F.D., Russell, J.A. (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol. 217, 483–509.

    Article  CAS  PubMed  Google Scholar 

  24. Gynheung, A. (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol. 79, 568–570.

    Article  Google Scholar 

  25. Peña, L., Pérez, R., Cervera, M., Juárez, J., Navarro, L. (2004) Early events in Agrobac-terium -mediated genetic transformation of citrus explants. Ann. Bot. 94, 67–74.

    Article  PubMed  Google Scholar 

  26. Villemont, E., Dubois, F., Sangwan, R., Vas- seur, G., Bourgeois, Y., Sangwan-Norreel, B. (1997) Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia: Evidence of an S-phase control mechanism for T-DNA transfer. Planta 201, 160–172.

    Article  CAS  Google Scholar 

  27. Zupan, J., Muth, T., Draper, O., Zam-brisky, P. (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: A feast of fundamental insights. Plant J. 23, 11–28.

    Article  CAS  PubMed  Google Scholar 

  28. Sheng, O., Citovsky, V. (1996) Agrobac-terium -plant cell DNA transport: Have virulence proteins will travel. Plant Cell 8, 1699–1710.

    Article  CAS  PubMed  Google Scholar 

  29. Hoekema, A. (1983) A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumafaciens Ti-plasmid. Nature 303, 179–180.

    Article  CAS  Google Scholar 

  30. Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichholtz, D., Rogers, S.G., Fraley, R.T. (1985) A simple and general-method for transferring genes into plants. Science 227, 1229–1231

    Article  CAS  Google Scholar 

  31. Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A., Arnheim, N. (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350.

    Article  CAS  PubMed  Google Scholar 

  32. Lyons, A.B., Parish, C.R. (1994) Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 171, 131–7.

    Article  CAS  PubMed  Google Scholar 

  33. Perez, L., Ayala, M., Pimentel, G., Bell, H., Canáan-Haden, L., Bequet, M., Gonzalez, L.J., Miranda, M., Ravelo, R., Roque, L., Acevedo, B., Oliva, J.P., Gavilondo, J.V. (2006) A multivalent recombinant antibody fragment specific for carcinoembry-onic antigen. Biotechnol. Appl. Biochem. 43, 39–48.

    Article  CAS  PubMed  Google Scholar 

  34. Graves, S.W., Woods, T.A., Kim, H., Nolan, J.P. (2005) Direct fluorescent staining and analysis of proteins on microspheres using CBQCA. Cytometry Part A 65A, 50–8.

    Article  CAS  Google Scholar 

  35. Moore, A.C., Gallimore, A., Draper, S.J., Watkins, K.R., Gilbert, S.C., Hill, A.V.S. (2005) Anti-CD25 antibody enhancement of vaccine-induced immunogenicity: Increased durable cellular immunity with reduced immunodominance. J. Immunol. 175, 7264–73.

    CAS  PubMed  Google Scholar 

  36. Marks, J.D., Hoogenboom, H.R., Bonnert, T. P., McCafferty, J., Griffiths, A.D., Winter, G. (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222, 581–597.

    Article  CAS  PubMed  Google Scholar 

  37. Marks, J.D., Tristem, M., Karpas, A., Winter, G. (1991) Oligonucleotide primers for polymerase chain reaction amplification of human immunoglobulin variable genes and design of family-specific oligonucleotide probes. Eur. J. Immunol. 21, 985–991.

    Article  CAS  PubMed  Google Scholar 

  38. Kabat, E.A., Wu, T. T., Perry, H.M., Gottes-man, K.S., Foeller, C. (1991) Sequences of Proteins of Immunological Interest. 5 th ed. US Department of Health and Human Services, Bethesda.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ayala, M. et al. (2009). Production of Plantibodies in Nicotiana Plants. In: Faye, L., Gomord, V. (eds) Recombinant Proteins From Plants. Methods in Molecular Biology™, vol 483. Humana Press. https://doi.org/10.1007/978-1-59745-407-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-407-0_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-978-9

  • Online ISBN: 978-1-59745-407-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics