Skip to main content

Production of Antibody Fragments in Arabidopsis Seeds

  • Protocol
Recombinant Proteins From Plants

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 483))

Summary

Plants offer a number of attractive benefits over conventional mammalian or bacterial cell culture systems for the production of valuable pharmaceutical and industrial proteins. Currently, antibodies and their derived fragments represent the largest and most important group of biotechnological products in clinical trials. In particular, single-chain antibodies are an interesting class of biopharmaceuticals because they are able to overcome specific problems associated with full-length antibodies. Another valuable antibody format is the scFv-Fc: fusion of the Fc domain to a single-chain variable fragment restores antibody effector functions, allows purification, and mimicks, despite being a ‘single-gene’ product, the bivalent properties of a full-length IgG. Although many different plant-based production platforms have been evaluated for antibody production, seeds are especially attractive because, as natural storage organs, they provide an optimal biochemical environment for the accumulation and long-term storage of large amounts of functional proteins. This chapter describes how to achieve high-level seed-specific expression of antibody fragments, how to select the best transgenic lines, and how to evaluate the accumulation level in the seed stocks from the selected lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma, J.K.C., Barros, E., Bock, R., Christou, P., Dale, P.J., Dix, P.J., Fischer, R., Ir win, J., Mahoney, R., Pezzotti, M., Schillberg, S., Sparrow, P., Stoger, E., and Twyman, R.M. (2005) Molecular farming for new drugs and vaccines.EMBO Rep. 6, 593–599.

    Article  CAS  PubMed  Google Scholar 

  2. Ma, J.K.C., Chikwamba, R., Sparrow, P., Fischer, R., Mahoney, R., and Twyman, R.M. (2005) Plant-derived pharmaceuti-cals—the road forward.Trends Plant Sci. 10, 580–585.

    Article  CAS  PubMed  Google Scholar 

  3. Twyman, R.M., Stoger, E., Schillberg, S., Christou, P., and Fischer, R. (2003) Molecular farming in plants: host systems and expression technology.Trends Biotechnol. 21, 570–578.

    Article  CAS  PubMed  Google Scholar 

  4. Menkhaus, T.J., Bai, Y., Zhang, C., Nikolov, Z.L., and Glatz, C.E. (2004) Considerations for the recovery of recombinant proteins from plants.Biotechnol. Prog. 20, 1001–1014.

    Article  CAS  PubMed  Google Scholar 

  5. Goossens, A., Dillen, W., De Clercq, J., Van Montagu, M., and Angenon, G. (1999) The arcelin-5 gene of Phaseolus vulgaris directs high seed-specific expression in transgenic Phaseolus acutifolius and Arabidopsis plants.Plant Physiol. 120, 1095–1104.

    Article  CAS  PubMed  Google Scholar 

  6. Stoger, E., Ma, J.K.C., Fischer, R., and Christou, P. (2005) Sowing the seeds of success: pharmaceutical proteins from plants.Curr. Opin. Biotechnol. 16, 167–173.

    Article  CAS  PubMed  Google Scholar 

  7. Stoger, E., Sack, M., Nicholson, L., Fischer, R., and Christou, P. (2005) Recent progress in plantibody technology.Curr. Pharm. Des. 11, 2439–2457.

    Article  CAS  PubMed  Google Scholar 

  8. Gomord, V., Sourrouille, C., Fitchette, A.C., Bardor, M., Pagny, S., Lerouge, P., and Faye, L. (2004) Production and glycosylation of plant-made pharmaceuticals: the antibodies as a challenge.Plant Biotechnol. J. 2, 83–100.

    Article  CAS  PubMed  Google Scholar 

  9. Schillberg, S., Emans, N., and Fischer, R. (2002) Antibody molecular farming in plants and plant cells.Phytochem. Rev. 1, 45–54.

    Article  CAS  Google Scholar 

  10. Schouten, A., Roosien, J., van Engelen, F.A., de Jong, G.A., Borst-Vrenssen, A.W., Zilverentant, J.F., Bosch, D., Stiekema, W.J., Gommers, F.J., Schots, A., and Bakker, J. (1998) The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco.Plant Mol. Biol. 30, 781–793.

    Article  Google Scholar 

  11. De Jaeger, G., Scheffer, S., Jacobs, A., Zam-bre, M., Zobel, O., Goossens, A., Depicker, A., and Angenon, G. (2002) Boosting het-erologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences.Nat. Biotechnol. 20, 1265–1268.

    Article  PubMed  Google Scholar 

  12. Van Droogenbroeck, B., Cao, J., Stadlmann, J., Altmann, F., Colanesi, S., Hillmer, S., Robinson, D.G., Van Lerberge, E., Terryn, N., Van Montagu, M., Liang, M., Depicker, A., and De Jaeger, G. (2007) Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds. Proc. Natl. Acad. Sci. USA 104, 1430–1435.

    Article  PubMed  Google Scholar 

  13. Shu, L., Qi, C.-F., Schlom, J., and Kashmiri, S.V.S. (1993) Secretion of a single-gene-encoded immunoglobulin from myeloma cells.Proc. Natl. Acad. Sci. USA 90, 7995–7999.

    Article  CAS  PubMed  Google Scholar 

  14. Powers, D.B., Amersdorfer, P., Poul, M.-A., Nielsen, U.B., Shalaby, M.R., Adams, G.P., Weiner, L.M., and Marks, J.D. (2001) Expression of single-chain Fv-Fc fusions in Pichia pastoris.J. Immunol. Methods 251, 123–135.

    Article  CAS  PubMed  Google Scholar 

  15. Clough, S.J., and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium- mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.

    Article  CAS  PubMed  Google Scholar 

  16. Smith, B.J. (1984) SDS polyacrylamide gel electrophoresis of proteins. in Methods in Molecular Biology, vol. 1:Proteins(Walker, J.M., ed.). Humana Press, Clifton, NJ, pp. 165–178.

    Google Scholar 

  17. Terpe, K. (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems.Appl. Microbiol. Biotechnol. 60, 523–533.

    CAS  PubMed  Google Scholar 

  18. Krebbers, E., Herdies, L., De Clercq, A., Seurinck, J., Leemans, J., Van Damme, J., Segura, M., Gheysen, G., Van Montagu, M., and Vandekerckhove, J. (1988) Determination of the processing sites of an Ara-bidopsis 2S albumin and characterization of the complete gene family.Plant Physiol. 87, 859–866.

    Article  CAS  PubMed  Google Scholar 

  19. Koncz, C.L, and Schell, J. (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector.Mol. Gen. Genet. 204, 383–396.

    Article  CAS  Google Scholar 

  20. Clough, S.J. (2004) Plant transformation—Agrobacterium-mediated germ line transformation. in Methods in Molecular Biology, vol. 286:Transgenic plants: Methods and Protocols(Peña, L., ed.). Humana Press, Clifton, NY, pp. 91–101.

    Google Scholar 

  21. De Wilde, C., Van Houdt, H., De Buck, S., Angenon, G., De Jaeger, G., and Depicker, A. (2000) Plants as bioreactors for protein production: avoiding the problem of trans-gene silencing.Plant Mol. Biol. 43, 347–359.

    Article  PubMed  Google Scholar 

  22. Chernoff, H., and Lehmann, E.L. (1954) The use of maximum likelihood estimates in x2 tests for goodness-of-fit.Ann. Math. Stat. 25, 579–586.

    Article  Google Scholar 

  23. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein measurement with the Folin phenol reagents.J. Biol. Chem. 193, 265–275.

    CAS  PubMed  Google Scholar 

  24. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Sylvie De Buck for critical reading of the manuscript and Martine De Cock for help preparing it. This work was supported by grants from the Pharma–Planta Consortium, which is funded by the European Union through the Framework 6 research program. K.D.W was indebted to the ‘Bijzonder Onder-zoeksfonds’ of the Ghent University for a predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Droogenbroeck, B.V., Wilde, K.D., Depicker, A. (2009). Production of Antibody Fragments in Arabidopsis Seeds. In: Faye, L., Gomord, V. (eds) Recombinant Proteins From Plants. Methods in Molecular Biology™, vol 483. Humana Press. https://doi.org/10.1007/978-1-59745-407-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-407-0_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-978-9

  • Online ISBN: 978-1-59745-407-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics