Skip to main content

From Neanderthal to Nanobiotech: From Plant Potions to Pharming with Plant Factories

  • Protocol
Recombinant Proteins From Plants

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 483))

Summary

Plants were the main source for human drugs until the beginning of the nineteenth century when plantderived pharmaceuticals were partly supplanted by drugs produced by the industrial methods of chemical synthesis. During the last decades of the twentieth century, genetic engineering has offered an alternative to chemical synthesis, using bacteria, yeasts and animal cells as factories for the production of therapeutic proteins. After a temporary decrease in interest, plants are rapidly moving back into human pharmacopoeia, with the recent development of plant-based recombinant protein production systems offering a safe and extremely cost-effective alternative to microbial and mammalian cell cultures. In this short review, we will illustrate that current improvements in plant expression systems are making them suitable as alternative factories for the production of either simple or highly complex therapeutic proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walsh, G., and Jefferis, R. (2006) Posttranslational modifications in the context of therapeutic proteins. Nat. Biotechnol. 24, 1241–1252.

    Article  CAS  PubMed  Google Scholar 

  2. Gomord, V., and Faye, L. (2004) Posttranslational modification of therapeutic proteins in plants. Curr. Opin. Plant Biol. 7, 171–181.

    Article  CAS  PubMed  Google Scholar 

  3. Twyman, R.M., Stoger, E., Schillberg, S., Christou, P., and Fischer, R. (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol. 21, 570–578.

    Article  CAS  PubMed  Google Scholar 

  4. Gomord, V., Sourrouille, C., Fitchette, A.-C., Bardor, M., Pagnt, S., Lerouge, P., and Faye, L. (2004) Production and glycosylation of plant-made pharmaceuticals: the antibodies as a challenge. Plant Biotechnol. J. 2, 83–100.

    Article  CAS  PubMed  Google Scholar 

  5. Hiatt, A., Cafferkey, R., and Bowdish, K. (1989) Production of antibodies in transgenic plants. Nature 342, 76–78.

    Article  CAS  PubMed  Google Scholar 

  6. Ma, J.K., Hiatt, A., Hein, M., Vine, N.D., Wang, F., Stabila, P., van Dolleweerd, C., Mostov, K., and Lehner, T. (1995) Generation and assembly of secretory antibodies in plants. Science 268, 716–719.

    Article  CAS  PubMed  Google Scholar 

  7. Khoudi, H., Laberge, S., Ferullo, J.M., Bazin, R., Darveau, A., Castonguay, Y., Allard, G., Lemieux, R., and Vezina, L.P. (1999) Production of a diagnostic monoclonal antibody in perennial alfalfa plants. Biotechnol. Bioeng. 64, 135–143.

    Article  CAS  PubMed  Google Scholar 

  8. Austin, S., Bingham, E.T., Koegel, R.G., Mathews, D.E., Shahan, M.N., Straub, R.J., and Burgess, R.R. (1994) An overview of a feasibility study for the production of industrial enzymes in transgenic alfalfa. Ann. N. Y. Acad. Sci. 721, 234–244.

    Article  CAS  PubMed  Google Scholar 

  9. Gomord, V., Chamberlain, P., Jef feris, R., and Faye, L. (2005) Biopharmaceutical production in plants: problems, solutions and opportunities. Trends Biotechnol. 23, 559–565.

    Article  CAS  PubMed  Google Scholar 

  10. Cabanes-Macheteau, M., Fitchette-Laine, A.C., Loutelier-Bourhis, C., Lange, C., Vine, N.D., Ma, J.K., Lerouge, P., and Faye, L. (1999) N-Glycosylation of a mouse IgG expressed in transgenic tobacco plants. Glycobiology 9, 365–372.

    Article  CAS  PubMed  Google Scholar 

  11. Bakker, H., Bardor, M., Molthoff, J.W., Gomor d, V., Elbers, I., Stevens, L.H., Jordi, W., Lommen, A., Faye, L., Ler ouge, P., and Bosch, D. (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc. Natl. Acad. Sci. U. S. A. 98, 2899–2904.

    Article  CAS  PubMed  Google Scholar 

  12. Bouquin, T., Thomsen, M., Nielsen, L.K., Green, T.H., Mundy, J., and Hanefeld Dziegiel, M. (2002) Human anti-rhesus D IgG1 antibody produced in transgenic plants. Transgenic Res. 11, 115–122.

    Article  CAS  PubMed  Google Scholar 

  13. Streatfield, S.J. (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol. J. 5, 2–15.

    Article  CAS  PubMed  Google Scholar 

  14. Perlak, F.J., Fuchs, R.L., Dean, D.A., McPherson, S.L., and Fischhoff, D.A. (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. U. S. A. 88, 3324–3328.

    Article  CAS  PubMed  Google Scholar 

  15. Jensen, L.G., Olsen, O., Kops, O., Wolf, N., Thomsen, K.K., and von Wettstein, D. (1996) Transgenic barley expressing a protein-engineered, thermostable (1,3–1,4)-beta-glucanase during germination. Proc. Natl. Acad. Sci.U. S. A. 93, 3487–3491.

    Article  CAS  PubMed  Google Scholar 

  16. Batard, Y., Hehn, A., Nedelkina, S., Schalk, M., Pallett, K., Schaller, H., and Werck-Reichhart, D. (2000) Increasing expression of P450 and P450-reductase proteins from monocots in heterologous systems. Arch. Biochem. Biophys. 379, 161–169.

    Article  CAS  PubMed  Google Scholar 

  17. Hamada, A., Yamaguchi, K.-I., Ohnishi, N., Harada, M., Nikumaru, S., and Honda, H. (2005) High-level production of yeast (Schwanniomyces occidentalis) phytase in transgenic rice plants by a combination of signal sequence and codon modification of the phytase gene. Plant Biotechnol. J. 3, 43–55.

    Article  CAS  PubMed  Google Scholar 

  18. Hamilton, A.J., and Baulcombe, D.C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952.

    Article  CAS  PubMed  Google Scholar 

  19. Voinnet, O. (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat. Rev. Genet. 6, 206–220.

    Article  CAS  PubMed  Google Scholar 

  20. Scholthof, H.B., Scholthof, K.B., and Jackson, A.O. (1995) Identification of tomato bushy stunt virus host-specific symptom determinants by expression of individual genes from a potato virus X vector. Plant Cell 7, 1157–1172.

    Article  CAS  PubMed  Google Scholar 

  21. Voinnet, O., Rivas, S., Mestre, P., and Baulcombe, D. (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 33, 949–956.

    Article  CAS  PubMed  Google Scholar 

  22. Voinnet, O., Pinto, Y.M., and Baulcombe, D.C. (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad. Sci. U. S. A. 96, 14147–14152.

    Article  CAS  PubMed  Google Scholar 

  23. Goldstein, D.A., and Thomas, J.A. (2004) Biopharmaceuticals derived from genetically modified plants. Q. J. Med. 97, 705–716.

    CAS  Google Scholar 

  24. Hellwig, S., Drossard, J., Twyman, R.M., and Fischer, R. (2004) Plant cell cultures for the production of recombinant proteins. Nat. Biotechnol. 22, 1415–1422.

    Article  CAS  PubMed  Google Scholar 

  25. Masumura, T., Morita, S., Miki, Y., Kurita, A., Morita, S., Shirono, H., Koga, J., and Tanaka, K. (2006) Production of biologically active human interferon-alpha in transgenic rice. Plant Biotechnol. J. 23, 91–97.

    CAS  Google Scholar 

  26. Shirono, H., Morita, S., Miki, Y., Kurita, A., Morita, S., Koga, J., Tanaka, K., and Masumura, T. (2006) Highly efficient production of human interferon-alpha by transgenic cultured rice cells.Plant Biotechnol. J. 23, 283–289.

    CAS  Google Scholar 

  27. Vancanneyt, G., Dubald, M., Schröder, W., Peters, J., and Botterman, J. (2008) A case study for plant-made pharmaceuticals comparing different plant expression and production systems. This issue.

    Google Scholar 

  28. Goldstein, D.A., and Thomas, J.A. (2004) Biopharmaceuticals derived from genetically modified plants. Q. J. Med. 97, 705–716.

    CAS  Google Scholar 

  29. Streatfield, S.J. (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol. J. 5, 2–15.

    Article  CAS  PubMed  Google Scholar 

  30. Lienard, D., Tran Dinh, O., van Oort, E., Van Overtvelt, L., Bonneau, C., Wambre, E., Bardor, M., Cosette, P., Didier-Laurent, A., Dorlhac de Borne, F., Delon, R., van Ree, R., Moingeon, P., Faye, L., and Gomord, V. (2007) Suspension-cultured BY-2 tobacco cells produce and mature immunologically active house dust mite allergens, Chapter 12 in this book. Plant Biotechnol. J. 5, 93–108.

    Article  CAS  PubMed  Google Scholar 

  31. Conrad, U., and Fiedler, U. (1998) Compartment-specific accumulation of recombinant immunoglobulins in plant cells: an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity.Plant Mol. Biol. 38, 101–109.

    Article  CAS  PubMed  Google Scholar 

  32. Wandelt, C.I., Khan, M.R., Craig, S., Schroeder, H.E., Spencer, D., and Higgins, T.J. (1992) Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. Plant J. 2, 181–192.

    CAS  PubMed  Google Scholar 

  33. Vitale, A., and Pedrazzini, E. (2005) Recombinant pharmaceuticals from plants: the plant endomembrane system as bioreactor. Mol. Interv. 5, 216–225.

    Article  CAS  PubMed  Google Scholar 

  34. Arcalis, E., Marcel, S., Altmann, F., Kolarich, D., Drakakaki, G., Fischer, R., Christou, P., and Stoger, E. (2004) Unexpected deposition patterns of recombinant proteins in post-endoplasmic reticulum compartments of wheat endosperm. Plant Physiol. 136, 3457–3466.

    Article  CAS  PubMed  Google Scholar 

  35. Rademacher, T., Arcalis, E., and Stoger, E. (2008) Production and localization of recombinant pharmaceuticals in transgenic seeds. Chapter 5 in this book

    Google Scholar 

  36. Torrent, M., Llop, I., and Ludevid, M.D. (2008) Protein body induction: a new tool to produce and recover recombinant proteins in plants. This issue

    Google Scholar 

  37. van Rooijen, G.J., and Moloney, M.M. (1995) Structural requirements of oleosin domains for subcellular targeting to the oil body, Chapter 11 in this book. Plant Physiol. 109, 1353–1361.

    Article  PubMed  Google Scholar 

  38. Nykiforuk, C.L., Boothe, J.G., Murray, E.W., Keon, R.G., Goren, H.J., Markley, N.A., and Moloney, M.M. (2006) Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds. Plant Biotechnol. J. 4, 77–86.

    Article  CAS  PubMed  Google Scholar 

  39. Daniell, H., and Dhingra, A. (2002) Multigene engineering: dawn of an exciting new era in biotechnology. Curr. Opin. Biotechnol. 13, 136–141.

    Article  CAS  PubMed  Google Scholar 

  40. De Cosa, B., Moar, W., Lee, S.B., Miller, M., and Daniell, H. (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol. 19, 71–74.

    Article  PubMed  Google Scholar 

  41. Singh, N.D., Ding, Y., and Daniell, H. (2008) Chloroplast-derived vaccine antigens and biopharmaceuticals: protocols for expression, purification or oral delivery and functional evaluation. This issue

    Google Scholar 

  42. Staub, J.M., Garcia, B., Graves, J., Hajdukiewicz, P. T., Hunter, P., Nehra, N., Paradkar, V., Schlittler, M., Carroll, J.A., Spatola, L., Ward, D., Ye, G., and Russell, D.A. (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat. Biotechnol. 18, 333–338.

    Article  CAS  PubMed  Google Scholar 

  43. Jobling, S.A., Jarman, C., Teh, M.M., Holmberg, N., Blake, C., and Verhoeyen, M.E. (2003) Immunomodulation of enzyme function in plants by single- domain antibody fragments. Nat. Biotechnol. 21, 77–80.

    Article  CAS  PubMed  Google Scholar 

  44. Daniell, H., Streatfield, S.J., and Wycoff, K. (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci. 6, 219–226.

    Article  CAS  PubMed  Google Scholar 

  45. Mayfield, S.P., Franklin, S.E., and Lerner, R.A. (2003) Expression and assembly of a fully active antibody in algae.Proc. Natl. Acad. Sci. U. S. A. 100, 438–442.

    Article  CAS  PubMed  Google Scholar 

  46. Faye, L., and Daniell, H. (2006) Novel pathway for glycoprotein import into chloroplasts. Plant Biotechnol. J. 4, 275–279.

    Article  CAS  PubMed  Google Scholar 

  47. Michaud, D., Vrain, T., Gomord, V., and Faye, L. (1998) Stability of recombinant proteins in plants. In Methods in biotechnology. Recombinant proteins from plants—production and isolation of clinically useful compounds, P. AJR, ed. (Totowa (NJ): Humana Press), pp. 177–188.

    Google Scholar 

  48. Michaud, D. (1998) Gel electrophoresis of proteolytic enzymes. Anal. Chim. Acta 372, 173–185.

    Article  CAS  Google Scholar 

  49. Schouten, A., Roosien, J., van Engelen, F.A., de Jong, G.A., Borst-Vrenssen, A.W., Zilverentant, J.F., Bosch, D., Stiekema, W.J., Gommers, F.J., Schots, A., and Bakker, J. (1996) The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol. Biol. 30, 781–793.

    Article  CAS  PubMed  Google Scholar 

  50. Pagny, S., Cabanes-Macheteau, M., Gillikin, J.W., Leborgne-Castel, N., Ler ouge, P., Boston, R.S., Faye, L., and Gomord, V. (2000) Protein recycling from the Golgi apparatus to the endoplasmic reticulum in plants and its minor contribution to calreticulin retention. Plant Cell 12, 739–756.

    Article  CAS  PubMed  Google Scholar 

  51. Wong, E.Y., Hironaka, C.M., and Fischhoff, D.A. (1992) Arabidopsis thaliana small subunit leader and transit peptide enhance the expression of Bacillus thuringiensis proteins in transgenic plants. Plant Mol. Biol. 20, 81–93.

    Article  CAS  PubMed  Google Scholar 

  52. Benchabane, M., Rivard, D., Girard, C., and Michaud, D. (XXXX) Companion protease inhibitors to protect recombinant proteins in transgenic plant extracts. This issue

    Google Scholar 

  53. Rivard, D., Anguenot, R., Brunelle, F., Le, V.Q., Vézina, L.P., Trépanier, S., Michaud, D. (2006) An in-built proteinase inhibitor system for the protection of recombinant proteins recovered from transgenic plants. Plant Biotechnol. J. 4, 359–368.

    Article  CAS  PubMed  Google Scholar 

  54. Merle, C., Perret, S., Lacour, T., Jonval, V., Hudaverdian, S., Garrone, R., Ruggiero, F., and Theisen, M. (2002) Hydroxylated human homotrimeric collagen I in Agrobacterium tumefaciens-mediated transient expression and in transgenic tobacco plant. FEBS Lett. 515, 114–118.

    Article  CAS  PubMed  Google Scholar 

  55. Saint-Jore-Dupas, C., Faye, L., and Gomord, V. (2007) From planta to pharma with glycosylation in the toolbox. Trends Biotechnol. 25, 317–323.

    Article  CAS  PubMed  Google Scholar 

  56. Aalberse, R.C., Koshte, V., and Clemens, J.G. (1981) Immunoglobulin E antibodies that crossreact with vegetable foods, pollen, and Hymenoptera venom. J. Allergy Clin. Immunol. 68, 356–364.

    Article  CAS  PubMed  Google Scholar 

  57. Faye, L., and Chrispeels, M.J. (1985) Characterization of N-linked oligosaccharides by affinoblotting with concanavalin A- peroxidase and treatment of the blots with glycosidases. Anal. Biochem. 149, 218–224.

    Article  CAS  PubMed  Google Scholar 

  58. Aalberse, R.C., Koshte, V., and Clemens, J.G. (1981) Cross-reactions between vegetable foods, pollen and bee venom due to IgE antibodies to a ubiquitous carbohydrate determinant. Int. Arch. Allergy Appl. Immunol. 66, 259–260.

    Article  CAS  Google Scholar 

  59. Bardor, M., Faveeuw, C., Fitchette, A.C., Gilbert, D., Galas, L., Trottein, F., Faye, L., and Lerouge, P. (2003) Immunoreactivity in mammals of two typical plant glycoepitopes, core alpha(1,3)-fucose and core xylose. Glycobiology 13, 427–434.

    Article  CAS  PubMed  Google Scholar 

  60. Jin, C., Bencurova, M., Borth, N., Ferko, B., Jensen-Jarolim, E., Altmann, F., and Hantusch, B. (2006) Immunoglobulin G specifically binding plant N-glycans with high affinity could be generated in rabbits but not in mice. Glycobiology 16, 349–357.

    Article  CAS  PubMed  Google Scholar 

  61. Nuttall, J., Ma, J.K., and Frigerio, L. (2005) A functional antibody lacking N-linked glycans is efficiently folded, assembled and secreted by tobacco mesophyll protoplasts. Plant Biotechnol. J. 3, 497–504.

    Article  CAS  PubMed  Google Scholar 

  62. Sriraman, R., Bardor, M., Sack, M., Vaquero, C., Faye, L., Fischer, R., Finnern, R., and Lerouge, P. (2004) Recombinant anti-hCG antibodies retained in the endoplasmic reticulum of transformed plants lack core-xylose and core-alpha(1,3)-fucose residues. Plant Biotechnol. J. 2, 279–287.

    Article  CAS  PubMed  Google Scholar 

  63. Petruccelli, S., Otegui, M.S., Lareu, F., Tran Dinh, O., Fitchette, A.-C., Circosta, A., Rumbo, M., Bardor, M., Carcamo, R., Gomord, V., and Beachy, R.N. (2006) A KDEL-tagged monoclonal antibody is efficiently retained in the endoplasmic reticulum in leaves, but is both partially secreted and sorted to protein storage vacuoles in seeds. Plant Biotechnol. J. 4, 511–527.

    CAS  PubMed  Google Scholar 

  64. Strasser, R., Altmann, F., Mach, L., Glossl, J., and Steinkellner, H. (2004) Generation of Arabidopsis thaliana plants with complex N-glycans lacking beta1,2-linked xylose and core alpha1,3-linked fucose. FEBS Lett. 561, 132–136.

    Article  CAS  PubMed  Google Scholar 

  65. Koprivova, A., Stemmer, C., Altmann, F., Hoffmann, A., Kopriva, S., Gorr, G., Reski, R., and Decker, E.L. (2004) Targeted knockouts of Physcomitrella lacking plantspecific immunogenic N-glycans. Plant Biotechnol. J. 2, 517–523.

    Article  CAS  PubMed  Google Scholar 

  66. Cox, K.M., Sterling, J.D., Regan, J.T., Gasdaska, J.R., Frantz, K.K., Peele, C.G., Black, A., Passmore, D., Moldovan-Loomis, C., Srinivasan, M., Cuison, S., Cardarelli, P.M., and Dickey, L.F. (2006) Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat. Biotechnol. 24, 1591–1597.

    Article  CAS  PubMed  Google Scholar 

  67. Sourrouille, C. (2005) Inactivation de l'alpha (1,3)-fucosyltransférase et de la beta (1,2)-xylosyltransferase, en vue de la production de protéines recombinantes d'intérêt thérapeutique chez la luzerne (Université de Rouen), pp. 164.

    Google Scholar 

  68. Schahs, M., Strasser, R., Stadlmann, J., Kunert, R., Rademacher, T., and Steinkellner, H. (2007) Production of a monoclonal antibody in plants with a humanized N-glycosylation pattern. Plant Biotechnol. J. 5, 657–663.

    Article  PubMed  Google Scholar 

  69. Schuster, M., Jost, W., Mudde, G.C., Wiederkum, S., Schwager, C., Janzek, E., Altmann, F., Stadlmann, J., Stemmer, C., and Gorr, G. (2007) In vivo glyco-engineered antibody with improved lytic potential produced by an innovative non-mammalian expression system. Biotechnol. J. 2, 700–708.

    Article  CAS  PubMed  Google Scholar 

  70. Misaki, R., Kimura, Y., Palacpac, N.Q., Yoshida, S., Fujiyama, K., and Seki, T. (2003) Plant cultured cells expressing human beta1,4-galactosyltransferase secrete glycoproteins with galactose-extended N-linked glycans. Glycobiology 13, 199–205.

    Article  CAS  PubMed  Google Scholar 

  71. Fujiyama, K., Palacpac, N.Q., Sakai, H., Kimura, Y., Shinmyo, A., Yoshida, T., and Seki, T. (2001) In vivo conversion of a glycan to human compatible type by transformed tobacco cells. Biochem. Biophys. Res. Commun. 289, 553–557.

    Article  CAS  PubMed  Google Scholar 

  72. Saint-Jore-Dupas, C., Nebenfuhr, A., Boulaflous, A., Follet-Gueye, M.L., Plasson, C., Hawes, C., Driouich, A., Faye, L., and Gomord, V. (2006) Plant N-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway. Plant Cell 18, 3182–3200.

    Article  CAS  PubMed  Google Scholar 

  73. Bakker, H., Rouwendal, G.J., Karnoup, A.S., Florack, D.E., Stoopen, G.M., Helsper, J.P., van Ree, R., van Die, I., and Bosch, D. (2006) An antibody produced in tobacco expressing a hybrid beta-1,4-galactosyltransferase is essentially devoid of plant carbohydrate epitopes. Proc. Natl. Acad. Sci. U. S. A. 103, 7577–7582.

    Article  CAS  PubMed  Google Scholar 

  74. Seveno, M., Bardor, M., Paccalet, T., Gomord, V., Lerouge, P., and Faye, L. (2004) Glycoprotein sialylation in plants? Nat. Biotechnol. 22, 1351–1352; 1352– 1353.

    Article  CAS  PubMed  Google Scholar 

  75. Zeleny, R., Kolarich, D., Strasser, R., and Altmann, F. (2006) Sialic acid concentrations in plants are in the range of inadvertent contamination. Planta 224, 222–227.

    Article  CAS  PubMed  Google Scholar 

  76. Jarvis, D.L. (2003) Developing baculovirusinsect cell expression systems for humanized recombinant glycoprotein production. Virology 310, 1–7.

    Article  CAS  PubMed  Google Scholar 

  77. Wee, E.G., Sherrier, D.J., Prime, T.A., and Dupree, P. (1998) Targeting of active sialyltransferase to the plant Golgi apparatus. Plant Cell 10, 1759–1768.

    Article  CAS  PubMed  Google Scholar 

  78. Misaki, R., Fujiyama, K., and Seki, T. (2006) Expression of human CMP-N- acetylneuraminic acid synthetase and CMP-sialic acid transporter in tobacco suspension-cultured cell. Biochem. Biophys. Res. Commun. 339, 1184–1189.

    Article  CAS  PubMed  Google Scholar 

  79. Paccalet, T., Bardor, M., Rihouey, C., Delmas, F., Chevalier, C., D'Aoust, M.-A., Faye, L., Vezina, L.P., Gomord, V., and Lerouge, P. (2007) Engineering of a sialic acid synthesis pathway in transgenic plants by expression of bacterial Neu5Ac-synthesizing enzymes. Plant Biotechnol. J. 5, 16–25.

    Article  CAS  PubMed  Google Scholar 

  80. Jefferis, R. (XXXX) Glycosylation of antibody therapeutics: optimisation for purpose. This issue

    Google Scholar 

  81. Schaefer, D., Zryd, J.P., Knight, C.D., and Cove, D.J. (1991) Stable transformation of the moss Physcomitrella patens. Mol. Gen. Genet. 226, 418–424.

    CAS  PubMed  Google Scholar 

  82. Schaefer, D.G., and Zryd, J.P. (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J. 11, 1195–1206.

    Article  CAS  PubMed  Google Scholar 

  83. Lienard, D., and Nogué, F. (XXXX) Physcomitrella patens: a non-vascular plant for recombinant protein production. This issue.

    Google Scholar 

  84. Baur, A., Reski, R., and Gorr, G. (2005) Enhanced recovery of a secreted recombinant human growth factor using stabilizing additives and by co-expression of human serum albumin in the moss Physcomitrella patens. Plant Biotechnol. J. 3, 331–340.

    Article  CAS  PubMed  Google Scholar 

  85. Schaefer, D.G., Bisztray, G., and Zrÿd, J.-P. (1994) Genetic transformation of the moss Physcomitrella patens. In Plant protoplasts and genetic engineering, V, Y.P.S. Bajaj, ed. (Berlin, Heidelberg, New York : Springer Verlag), pp. 349–364.

    Google Scholar 

  86. Vietor, R., Loutelier, B.C., Fitchette, A., Margerie, P., Gonneau, M., Faye, L., and Lerouge, P. (2003) Protein N-glycosylation is similar in the moss Physcomitrella patens and in higher plants. Planta 218, 269–275.

    Article  CAS  PubMed  Google Scholar 

  87. Franklin, S.E., and Mayfield, S.P. (2004) Prospects for molecular farming in the green alga Chlamydomonas. Curr. Opin. Plant Biol. 7, 159–165.

    Article  CAS  PubMed  Google Scholar 

  88. Leon-Banares, R., Gonzalez-Ballester, D., Galvan, A., and Fernandez, E. (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol. 22, 45–52.

    Article  CAS  PubMed  Google Scholar 

  89. Boynton, J.E., Gillham, N.W., Harris, E.H., Hosler, J.P., Johnson, A.M., Jones, A.R., Randolph-Anderson, B.L., Robertson, D., Klein, T.M., Shark, K.B., et al. (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240, 1534–1538.

    Article  CAS  PubMed  Google Scholar 

  90. Mayfield, S.P., and Franklin, S.E. (2005) Expression of human antibodies in eukaryotic micro-algae. Vaccine 23, 1828–1832.

    Article  Google Scholar 

  91. Gasdaska, J.R., Spencer, D., and Dickey, L.F. (2003) Advantages of therapeutic protein production in the aquatic plant Lemna. Bioprocessing J. 3, 50–56.

    Google Scholar 

  92. Shaaltiel, Y., Bartfeld, D., Hashmueli, S., Baum, G., Brill-Almon, E., Galili, G., Dym, O., Boldin-Adamsky, S.A., Silman, I., Sussman, J.L., Futerman, A.H., and Aviezer, D. (2007) Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher's disease using a plant cell system. Plant Biotechnol. J. 5, 579–590.

    Article  CAS  PubMed  Google Scholar 

  93. Elbers, I.J., Stoopen, G.M., Bakker, H., Stevens, L.H., Bardor, M., Molthoff, J.W., Jordi, W.J., Bosch, D., and Lommen, A. (2001) Influence of growth conditions and developmental stage on N-glycan heterogeneity of transgenic immunoglobulin G and endogenous proteins in tobacco leaves. Plant Physiol. 126, 1314–1322.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work on glycobiology at the University of Rouen was supported by the Centre National de la Recherche Scientifique (CNRS) and by the “Ministère de la Recherche”. We thank present and former colleagues who contributed to the work described in this review and for their critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sourrouille, C., Marshall, B., Liénard, D., Faye, L. (2009). From Neanderthal to Nanobiotech: From Plant Potions to Pharming with Plant Factories. In: Faye, L., Gomord, V. (eds) Recombinant Proteins From Plants. Methods in Molecular Biology™, vol 483. Humana Press. https://doi.org/10.1007/978-1-59745-407-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-407-0_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-978-9

  • Online ISBN: 978-1-59745-407-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics