Skip to main content

Image Analysis of Aggrecan Degradation in Articular Cartilage With Formalin-Fixed Samples

  • Protocol
Book cover Arthritis Research

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 135))

Abstract

Many studies in arthritis research require an evaluation of the cellular responses within the joint and the ensuing matrix degradation in articular cartilage. The early histochemical/histological scale of Mankin (1) has been widely used but recently challenged as insufficient (2). Imaging techniques such as microscopic magnetic resonance imaging (MRI) (3), polarized light microscopy (3), atomic force microscopy (4), and infrared spectral analysis (5) have opened new approaches to evaluating cartilage structure. Histological methods now include in situ hybridization for cell-specific gene expression and immunohistochemistry for the spatial organization of cartilage proteins and their processed forms.

This chapter details of a method for immunohistochemical analysis of aggrecan degradation in articular cartilage samples which have been prepared by standard methods of formalin fixation and paraffin embedding. The procedure focuses on the application of antibodies (e.g., anti-ADAMTS4, anti-MT4MMP) which detect some of the proteinases most likely involved, and anti-NITEGE which detects the terminal product of the aggrecanase-mediated cleavage of aggrecan at Glu392-Ala393 (bovine, human, dog, rat, pig, sheep, horse, mouse) or Glu393-Ala394 (chick).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mankin, H. J., Dorfman, H., Lippiello, L., and Zarins, A. (1971) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J. Bone Joint Surg. Am. 53, 523–537.

    CAS  PubMed  Google Scholar 

  2. Ostergaard, K., Petersen, J., Andersen, C. B., Bendtzen, K., and Salter, D. M. (1997) Histologic/histochemical grading system for osteoarthritic articular cartilage: reproducibility and validity. Arthritis Rheum. 40, 1766–1771.

    Article  CAS  PubMed  Google Scholar 

  3. Alhadlaq, H. A., Xia, Y., Moody, J. B., and Matyas, J. R. (2004) Detecting structural changes in early experimental osteoarthritis of tibial cartilage by microscopic magnetic resonance imaging and polarised light microscopy. Ann. Rheum. Dis. 63, 709–717.

    Article  CAS  PubMed  Google Scholar 

  4. Stolz, M., Raiteri, R., Daniels, A.U., VanLandingham, M. R., Baschong, W., and Aebi, U. (2004) Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys. J. 86, 3269–3283.

    Article  CAS  PubMed  Google Scholar 

  5. West, P. A., Bostrom, M.P., Torzilli, P. A., and Camacho, N.P. (2004) Fourier transform infrared spectral analysis of degenerative cartilage: an infrared fiber optic probe and imaging study. Appl. Spectrosc. 58, 376–381.

    Article  CAS  PubMed  Google Scholar 

  6. Koshy, P. J., Lundy, C. J., Rowan, A. D., et al. (2002) The modulation of matrix metalloproteinase and ADAM gene expression in human chondrocytes by interleukin-1 and oncostatin M: a time-course study using real-time quantitative reverse transcription-polymerase chain reaction. Arthritis Rheum. 46, 961–967.

    Article  CAS  PubMed  Google Scholar 

  7. Ng, L., Grodzinsky, A. J., Patwari, P., Sandy, J., Plaas, A., and Ortiz, C. (2003) Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy. J. Struct. Biol. 143, 242–257.

    Article  CAS  PubMed  Google Scholar 

  8. Lohmander, L. S., Neame, P. J., and Sandy, J. D. (1993) The structure of aggrecan fragments in human synovial fluid. Evidence that aggrecanase mediates cartilage degradation in inflammatory joint disease, joint injury, and osteoarthritis. Arthritis Rheum. 36, 1214–1222.

    Article  CAS  PubMed  Google Scholar 

  9. Sandy, J. D. and Verscharen, C. (2001) Analysis of aggrecan in human knee cartilage and synovial fluid indicates that aggrecanase (ADAMTS) activity is responsible for the catabolic turnover and loss of whole aggrecan whereas other protease activity is required for C-terminal processing in vivo. Biochem. J. 358, 615–626.

    Article  CAS  PubMed  Google Scholar 

  10. Oshita, H., Sandy, J. D., Suzuki, K., et al. (2004) Mature bovine articular cartilage contains abundant aggrecan that is C-terminally truncated at Ala719-Ala720, a site which is readily cleaved by m-calpain. Biochem. J. 382, 253–259.

    Article  CAS  PubMed  Google Scholar 

  11. Sandy, J. D., Flannery, C. R., Neame, P. J., and Lohmander, L. S. (1992) The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. J. Clin. Invest. 89, 1512–1516.

    Article  CAS  PubMed  Google Scholar 

  12. Malfait, A. M., Liu, R. Q., Ijiri, K., Komiya, S., and Tortorella, M. D. (2002) Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage. J. Biol. Chem. 277, 22,201–22,208.

    Article  CAS  PubMed  Google Scholar 

  13. Collins-Racie, L.A., Flannery, C.R., Zeng, W., et al. (2004) ADAMTS-8 exhibits aggrecanase activity and is expressed in human articular cartilage. Matrix Biol. 23, 219–230.

    Article  CAS  PubMed  Google Scholar 

  14. Arner, E. C., Pratta, M. A., Trzaskos, J. M., Decicco, C. P., and Tortorella, M. D. (1999) Generation and characterization of aggrecanase. A soluble, cartilage-derived aggrecan-degrading activity. J. Biol. Chem. 274, 6594–6601.

    Article  CAS  PubMed  Google Scholar 

  15. Pratta, M. A., Scherle, P. A., Yang, G., Liu, R. Q., and Newton, R. C. (2003) Induction of aggrecanase 1 (ADAM-TS4) by interleukin-1 occurs through activation of constitutively produced protein. Arthritis Rheum. 48, 119–133.

    Article  CAS  PubMed  Google Scholar 

  16. Patwari, P., Gao, G., Lee, J. H., Grodzinsky, A. G., and Sandy, J. D. (2005) Analysis of ADAMTS4 and MT4-MMP indicates that both are involved in aggrecanolysis in interleukin-1-treated bovine cartilage. Osteoarth. Cartilage 13, 269–277.

    Article  CAS  Google Scholar 

  17. Stanton, H., East, C., Golub, S., et al. (2005) ADAMTS-5 is the major aggrecanase in cartilage: in vitryo studies with ADAMTS-4 and ADAMTS-5 deficient mice. Orthopedic Research Society, Washington, DC, 206.

    Google Scholar 

  18. Gao, G., Plaas, A., Thompson, V. P., Jin, S., Zuo, F., and Sandy, J. D. ADAMTS4 (aggrecanase-1) activation on the cell surface involves C-terminal cleavage by glycosylphosphatidyl inositol-anchored membrane type 4-matrix metalloproteinase and binding of the activated proteinase to chondroitin sulfate and heparan sulfate on syndecan-1. J. Biol. Chem. 279, 10,042–10,051.

    Google Scholar 

  19. Gao, G., Westling, J., Thompson, V. P., Howell, T. D., Gottschall, P. E., and Sandy, J. D. Activation of the proteolytic activity of ADAMTS4 (aggrecanase-1) by C-terminal truncation. J. Biol. Chem. 277, 11,034–11,041.

    Google Scholar 

  20. Kashiwagi, M., Enghild, J.J., Gendron, C et al. (2004) Altered proteolytic activities of ADAMTS-4 expressed by C-terminal processing. J. Biol. Chem. 279, 10,109–10,119.

    Article  CAS  PubMed  Google Scholar 

  21. Singer, II, Scott, S., Kawka, D.W., et al. (1997) Aggrecanase and metalloproteinase-specific aggrecan neo-epitopes are induced in the articular cartilage of mice with collagen II-induced arthritis. Osteoarthritis Cartilage 5, 407–418.

    Article  CAS  PubMed  Google Scholar 

  22. Lark, M.W., Bayne, E.K., Flanagan, J., et al. (1997) Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase-activity in normal, osteoarthritic, and rheumatoid joints. J. Clin. Invest. 100, 93–106.

    Article  CAS  PubMed  Google Scholar 

  23. van Meurs, J. B., van Lent, P. L., Holthuysen, A. E., Singer, II, Bayne, E. K., and van den Berg, W. B. (1999) Kinetics of aggrecanase-and metalloproteinase-induced neoepitopes in various stages of cartilage destruction in murine arthritis. Arthritis Rheum. 42, 1128–1139.

    Article  PubMed  Google Scholar 

  24. McLean, I. W. and Nakane, P. K. (1974) Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J. Histochem. Cytochem. 22, 1077–1083.

    CAS  PubMed  Google Scholar 

  25. Chambers, M. G., Cox, L., Chong, L., et al. (2001) Matrix metalloproteinases and aggrecanases cleave aggrecan in different zones of normal cartilage but colocalize in the development of osteoarthritic lesions in STR/ort mice. Arthritis Rheum. 44, 1455–1465.

    Article  CAS  PubMed  Google Scholar 

  26. Bayliss, M. T., Hutton, S., Hayward, J., and Maciewicz, R. A. (2001) Distribution of aggrecanase (ADAMts 4/5) cleavage products in normal and osteoarthritic human articular cartilage: the influence of age, topography and zone of tissue. Osteoarthritis Cartilage 9, 553–560.

    Article  CAS  PubMed  Google Scholar 

  27. Clements, K. M., Price, J. S., Chambers, M. G., Visco, D. M., Poole, A. R., and Mason, R. M. (2003) Gene deletion of either interleukin-1beta, interleukin-1beta-converting enzyme, inducible nitric oxide synthase, or stromelysin 1 accelerates the development of knee osteoarthritis in mice after surgical transection of the medial collateral ligament and partial medial meniscectomy. Arthritis Rheum. 48, 3452–3463.

    Article  CAS  PubMed  Google Scholar 

  28. Lee, E. R., Lamplugh, L., Leblond, C. P., Mordier, S., Magny, M. C., and Mort, J. S. (1998) Immunolocalization of the cleavage of the aggrecan core protein at the Asn341-Phe342 bond, as an indicator of the location of the metalloproteinases active in the lysis of the rat growth plate. Anat. Rec. 252, 117–132.

    Article  CAS  PubMed  Google Scholar 

  29. Lee, E. R., Lamplugh, L., Davoli, M. A., et al. (2001) Enzymes active in the areas undergoing cartilage resorption during the development of the secondary ossification center in the tibiae of rats ages 0–21 days: I. Two groups of proteinases cleave the core protein of aggrecan. Dev. Dyn. 222, 52–70.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, P., Tortorella, M., England, K., et al. (2004) JBCA-EJ. Proprotein convertase furin interacts with and cleaves pro-ADAMTS4 (Aggrecanase-1) in the trans-Golgi network. J. Biol. Chem. 279, 15,434–15,440.

    Article  CAS  PubMed  Google Scholar 

  31. Itoh, Y., Kajita, M., Kinoh, H., Mori, H., Okada, A., and Seiki, M. (1999) Membrane type 4 matrix metalloproteinase (MT4-MMP, MMP-17) is a glycosylphosphatidylinositol-anchored proteinase. J. Biol. Chem. 274, 34,260–34,266.

    Article  CAS  PubMed  Google Scholar 

  32. Hunziker, E. B., Michel, M., and Studer, D. (1997) Ultrastructure of adult human articular cartilage matrix after cryotechnical processing. Microsc. Res. Tech. 37, 271–284.

    Article  CAS  PubMed  Google Scholar 

  33. Sandy, J. D., Gamett, D., Thompson, V., and Verscharen, C. (1998) Chondrocyte-mediated catabolism of aggrecan: aggrecanase-dependent cleavage induced by interleukin-1 or retinoic acid can be inhibited by glucosamine. Biochem. J. 335, 59–66.

    CAS  PubMed  Google Scholar 

  34. Patwari, P., Kurz, B., Sandy, J. D., and Grodzinsky, A.J. (2000) Mannosamine inhibits aggrecanase-mediated changes in the physical properties and biochemical composition of articular cartilage. Arch. Biochem. Biophys. 374, 79–85.

    Article  CAS  PubMed  Google Scholar 

  35. Sandy, J. D., Neame, P. J., Boynton, R. E., and Flannery, C.R. (1991) Catabolism of aggrecan in cartilage explants. Identification of a major cleavage site within the interglobular domain. J. Biol. Chem. 266, 8683–8685.

    CAS  PubMed  Google Scholar 

  36. Tortorella, M. D., Burn, T. C., Pratta, M. A., and Abbaszade, I., (1999) Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. Science 284, 1664–1666.

    Article  CAS  PubMed  Google Scholar 

  37. Abbaszade, I., Liu, R. Q., Yang, F., et al. (1999) Cloning and characterization of ADAMTS11, an aggrecanase from the ADAMTS family. J. Biol. Chem. 274, 23,443–23,450.

    Article  CAS  PubMed  Google Scholar 

  38. Roberts, C. R., Roughley, P. J., and Mort, J. S. (1989) Degradation of human proteoglycan aggregate induced by hydrogen peroxide. Protein fragmentation, amino acid modification and hyaluronic acid cleavage. Biochem. J. 259, 805–811.

    CAS  PubMed  Google Scholar 

  39. Sandy, J. D., Thompson, V., Verscharen, C., and Gamett, D. (1999) Chondrocyte-mediated catabolism of aggrecan: evidence for a glycosylphosphatidylinositol-linked protein in the aggrecanase response to interleukin-1 or retinoic acid. Arch. Biochem. Biophys. 367, 258–264.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Osborn, B., Bai, Y., Plaas, A.H.K., Sandy, J.D. (2007). Image Analysis of Aggrecan Degradation in Articular Cartilage With Formalin-Fixed Samples. In: Cope, A.P. (eds) Arthritis Research. Methods in Molecular Medicine, vol 135. Humana Press. https://doi.org/10.1007/978-1-59745-401-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-401-8_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-344-2

  • Online ISBN: 978-1-59745-401-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics