Skip to main content

Toward a Full Characterization of the Human 20S Proteasome Subunits and Their Isoforms by a Combination of Proteomic Approaches

  • Protocol
Functional Proteomics

Abstract

The 20S proteasome is a multicatalytic protein complex, present in all eukaryotic cells, that plays a major role in intracellular protein degradation. In mammalian cells, this symmetrical cylindrical complex is composed of two copies each of seven different α and β subunits arranged into four stacked rings (α7β7β7α7). Separation by two-dimensional (2D) gel electrophoresis of the human erythrocytes 20S proteasome subunits and mass spectrometry (MS) identification of all the observed spots reveal the presence of multiple isoforms for most of the subunits. These isoforms could correspond to protein variants and/or posttranslational modifications that may influence the 20S proteasome proteolytic activity. Their characterization is therefore important to establish the rules governing structure/activity relationships of the human 20S proteasome. This chapter describes the use of a combination of proteomic approaches to characterize the human 20S proteasome subunit isoforms separated by 2D gel electrophoresis. A “top-down” strategy was developed to determine by electrospray MS the molecular mass of the intact protein after its passive elution from the gel. Comparison of the experimental molecular mass to the theoretical one can reveal the presence of possible modifications. “Bottom-up” proteomic approaches are then performed and, after protein digestion, tandem MS analyses of the modified peptides allow the characterization and location of the modification. These methods are discussed for the study of the human erythrocytes 20S proteasome subunit isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Unno, M., Mizushima, T., Morimoto, Y., Tomisugi, Y., Tanaka, K., Yasuoka, N., et al. (2002) The structure of the mammalian 20S proteasome at 2.75 Å resolution. Structure 10, 609–618.

    Article  PubMed  CAS  Google Scholar 

  2. Orlowski, M. and Wilk, S. (2000) Catalytic activities of the 20S proteasome, a multicatalytic proteinase complex. Arch. Biochem. Biophys. 383, 1–16.

    Article  PubMed  CAS  Google Scholar 

  3. Rock, K. L. and Goldberg, A. L. (1999) Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu. Rev. Immunol. 17, 739–779.

    Article  PubMed  CAS  Google Scholar 

  4. Morel, S., Levy, F., Burlet-Schiltz, O., Brasseur, F., Probst-Kepper, M., Peitrequin, A. L., et al. (2000) Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity 12, 107–117.

    Article  PubMed  CAS  Google Scholar 

  5. Van den Eynde, B. J. and Morel, S. (2001) Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Curr. Opin. Immunol. 13, 147–153.

    Article  PubMed  Google Scholar 

  6. Burlet-Schiltz, O., Claverol, S., Gairin, J. E., and Monsarrat, B. (2005) The use of mass spectrometry to identify antigens from proteasome processing. Methods Enzymol. 405, 264–300.

    Article  PubMed  CAS  Google Scholar 

  7. Macagno, A., Gilliet, M., Sallusto, F., Lanzavecchia, A., Nestle, F. O., and Groettrup, M. (1999) Dendritic cells up-regulate immunoproteasomes and the proteasome regulator PA28 during maturation. Eur. J. Immunol. 29, 4037–4042.

    Article  PubMed  CAS  Google Scholar 

  8. Noda, C., Tanahashi, N., Shimbara, N., Hendil, K. B., and Tanaka, K. (2000) Tissue distribution of constitutive proteasomes, immunoproteasomes, and PA28 in rats. Biochem. Biophys. Res. Commun. 277, 348–354.

    Article  PubMed  CAS  Google Scholar 

  9. Husom, A. D., Peters, E. A., Kolling, E. A., Fugere, N. A., Thompson, L. V., and Ferrington, D. A. (2004) Altered proteasome function and subunit composition in aged muscle. Arch. Biochem. Biophys. 421, 67–76.

    Article  PubMed  CAS  Google Scholar 

  10. Drews, O., Zong, C., and Ping, P. (2007) Exploring proteasome complexes by proteomic approaches. Proteomics 7, 1047–1058.

    Article  PubMed  CAS  Google Scholar 

  11. Claverol, S., Burlet-Schiltz, O., Girbal-Neuhauser, E., Gairin, J. E., and Monsarrat, B. (2002) Mapping and structural dissection of human 20S proteasome using proteomic approaches. Mol. Cell. Proteomics 1, 567–578.

    Article  PubMed  CAS  Google Scholar 

  12. Iwafune, Y., Kawasaki, H., and Hirano, H. (2002) Electrophoretic analysis of phosphorylation of the yeast 20S proteasome. Electrophoresis 23, 329–338.

    Article  PubMed  CAS  Google Scholar 

  13. Kurucz, E., Ando, I., Sumegi, M., Holzl, H., Kapelari, B., Baumeister, W., et al. (2002) Assembly of the Drosophila 26S proteasome is accompanied by extensive subunit rearrangements. Biochem. J. 365, 527–536.

    Article  PubMed  CAS  Google Scholar 

  14. Yang, P., Fu, H., Walker, J., Papa, C. M., Smalle, J., Ju, Y. M., et al. (2004) Purification of the Arabidopsis 26S proteasome: biochemical and molecular analyses revealed the presence of multiple isoforms. J. Biol. Chem. 279, 6401–6413.

    Article  PubMed  CAS  Google Scholar 

  15. Huang, L. and Burlingame, A. L. (2005) Comprehensive mass spectrometric analysis of the 20S proteasome complex. Methods Enzymol. 405, 187–236.

    Article  PubMed  CAS  Google Scholar 

  16. Froment, C., Uttenweiler-Joseph, S., Bousquet-Dubouch, M. P., Matondo, M., Borges, J. P., Esmenjaud, C., et al. (2005) A quantitative proteomic approach using two-dimensional gel electrophoresis and isotope-coded affinity tag labeling for studying human 20S proteasome heterogeneity. Proteomics 5, 2351–2363.

    Article  PubMed  CAS  Google Scholar 

  17. Gomes, A. V., Zong, C., Edmondson, R. D., Li, X., Stefani, E., Zhang, J., et al. (2006) Mapping the murine cardiac 26S proteasome complexes. Circ. Res. 99, 362–371.

    Article  PubMed  CAS  Google Scholar 

  18. Schmidt, F., Dahlmann, B., Janek, K., Kloss, A., Wacker, M., Ackermann, R., et al. (2006) Comprehensive quantitative proteome analysis of 20S proteasome subtypes from rat liver by isotope coded affinity tag and 2-D gel-based approaches. Proteomics 6, 4622–4632.

    Article  PubMed  CAS  Google Scholar 

  19. Castano, J. G., Mahillo, E., Aritzi, P., and Arribas, J. (1996) Phosphorylation of C8 and C9 subunits of the multicatalytic proteinase by casein kinase II and identification of the C8 phosphorylation sites by direct mutagenesis. Biochemistry 35, 3782–3789.

    Article  PubMed  CAS  Google Scholar 

  20. Kimura, Y., Takaoka, M., Tanaka, S., Sassa, H., Tanaka, K., Polevoda, B., et al. (2000) N(alpha)-acetylation and proteolytic activity of the yeast 20S proteasome. J. Biol. Chem. 275, 4635–4639.

    Article  PubMed  CAS  Google Scholar 

  21. Wang, X., Chen, C. F., Baker, P. R., Chen, P. I., Kaiser, P., and Huang, L. (2007) Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry 46, 3553–3565.

    Article  PubMed  CAS  Google Scholar 

  22. Bousquet-Dubouch, M. P., Uttenweiler-Joseph, S., Ducoux-Petit, M., Matondo, M., Monsarrat, M., and Burlet-Schiltz, O. (2008) Organelle proteomics. In: Pflieger, D., Rossier, J. (eds.). Methods Mol. Biol. 432, 301–320.

    Google Scholar 

  23. Claverol, S., Burlet-Schiltz, O., Gairin, J. E., and Monsarrat, B. (2003) Characterization of protein variants and post-translational modifications: ESI-MSn analyses of intact protein eluted from polyacrylamide gels. Mol. Cell. Proteomics 2, 483–493.

    PubMed  CAS  Google Scholar 

  24. Lee, L. W., Moomaw, C. R., Orth, K., McGuire, M. J., DeMartino, G. N., and Slaughter, C. A. (1990) Relationship among the subunits of the high molecular weight proteinase, macropain (proteasome). Biochim. Biophys. Acta. 1037, 178–185.

    PubMed  CAS  Google Scholar 

  25. Beausoleil, S. A., Jedrychowski, M., Schwartz, D., Elias, J. E., Villen, J., Li, J., et al. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. USA 101, 12130–12135.

    Article  PubMed  CAS  Google Scholar 

  26. Beausoleil, S. A., Villen, J., Gerber, S. A., Rush, J., and Gygi S. P. (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat. Biotechnol. 24, 1285–1292.

    Article  PubMed  CAS  Google Scholar 

  27. Krokhin, O. V., Antonovici, M., Ens, W., Wilkins, J. A., and Standing, K. G. (2006) Deamidation of-Asn-Gly-sequences during sample preparation for proteomics: consequences for MALDI and HPLC-MALDI analysis. Anal. Chem. 78, 6645–6650.

    Article  PubMed  CAS  Google Scholar 

  28. Baumeister, W., Walz, J., Zühl, F., and Seemüller, E. (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380.

    Article  PubMed  CAS  Google Scholar 

  29. Hamdan, M., Galvani, M., and Righetti, P. G. (2001) Monitoring 2-D gel-induced modifications of proteins by MALDI-TOF mass spectrometry. Mass Spectrom. Rev. 20, 121–141.

    Article  PubMed  CAS  Google Scholar 

  30. Shevchenko, A., Loboda, A., Ens, W., Schraven, B., and Standing, K. G. (2001) Archived polyacrylamide gels as a resource for proteome characterization by mass spectrometry. Electrophoresis 22, 1194–1203.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this protocol

Cite this protocol

Uttenweiler-Joseph, S., Claverol, S., Sylvius, L., Bousquet-Dubouch, MP., Burlet-Schiltz, O., Monsarrat, B. (2008). Toward a Full Characterization of the Human 20S Proteasome Subunits and Their Isoforms by a Combination of Proteomic Approaches. In: Thompson, J.D., Ueffing, M., Schaeffer-Reiss, C. (eds) Functional Proteomics. Methods in Molecular Biology, vol 484. Humana Press. https://doi.org/10.1007/978-1-59745-398-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-398-1_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-971-0

  • Online ISBN: 978-1-59745-398-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics