Skip to main content

Large Multiprotein Structures Modeling and Simulation: The Need for Mesoscopic Models

  • Protocol
Functional Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 484))

Abstract

Recent observational techniques based upon confocal microscopy make it possible to observe cells at a scale that has never been probed before: the mesoscopic scale. In the eukaryotic cell nucleus, many objects demonstrating phenomena occurring at this scale, such as nuclear bodies, are current subjects of investigations. But from a modeling perspective, this scale has not been widely explored, and hence there is a lack of suitable models for such studies. By reviewing higher and lower scale modeling techniques, we analyze their relevance in the context of mesoscale phenomena. We emphasize important characteristics that should be included in a mesoscopic model: an explicit continuous three-dimensional space with discrete simplified molecules that still have the characteristics of steric volume exclusion and realistic distant interaction forces. Then we present 3DSPI, a model dedicated to studies of nuclear bodies based on a simple formalism inspired from molecular dynamics and coarse-grained models: particles interacting through a potential energy function and driven by an overdamped Langevin equation. Finally, we present the features expected to be included in the model, pointing out the difficulties that might arise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Matera, A. G. (1999) Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends Cell Biol. 9, 302–309.

    Article  PubMed  CAS  Google Scholar 

  2. McNally, J. G., Müller, W. G., Walker, D., Wolford, R., and Hager, G. L. (2000) The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287, 1262–1265.

    Article  PubMed  CAS  Google Scholar 

  3. Phair, R. D., Scaffidi, P., Elbi, C., Vecerova, J., Dey, A., Ozato, K., Brown, D. T., Hager, G., Bustin, M., and Misteli, T. (2004) Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol. Cell. Biol. 24(14), 6393–6402.

    Article  PubMed  CAS  Google Scholar 

  4. Handwerger, K. E. and Gall, J. G. (2006) Subnuclear organelles: new insights into form and function. Trends Cell Biol. 16, 19–26.

    Article  PubMed  CAS  Google Scholar 

  5. Misteli, T. (2001) Protein dynamics: implications for nuclear architecture and gene expression. Science 291, 843–847.

    Article  PubMed  CAS  Google Scholar 

  6. Misteli, T. (2005) Concepts in nuclear architecture. BioEssays 27, 477–487.

    Article  PubMed  CAS  Google Scholar 

  7. Cremer, T., Cremer, M., Dietzel, S., Müller, S., Solovei, I., and Fakan, S. (2006) Chromosome territories—a functional nuclear landscape. Curr. Opinion Cell Biol. 18, 307–316.

    Article  PubMed  CAS  Google Scholar 

  8. Branco, M. R. and Pombo, A. (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associatins. PLoS Biol. 4(5), 0780–0788.

    Article  CAS  Google Scholar 

  9. Kupiec, J.-J. (1997) A Darwinian theory for the origin of cellular differentiation. Mol. Gen. Genet. 255, 201–208.

    Article  PubMed  CAS  Google Scholar 

  10. Blake, W. J., Kærn, M., Cantor, C. R., and Collins, J. J. (2003) Noise in eukaryotic gene expression. Nature 422, 633–637.

    Article  PubMed  CAS  Google Scholar 

  11. Levsky, J. M., and Singer, R. H. (2003) Gene expression and the myth of the average cell. Trends Cell Biol. 13, 4–6.

    Article  PubMed  CAS  Google Scholar 

  12. Kærn, M., Elston, T. C., Blake, W. J., and Collins, J. J. (2005) Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet. 6, 451–464.

    Article  PubMed  CAS  Google Scholar 

  13. Sigal, A., Milo, R., Cohen, A., Geva-Zatorsky, N., Klein, Y., Liron, Y., Rosenfeld, N., Danon, T., Perzov, N., and Alon, U. (2006) Variability and memory of protein levels in human cells. Nature 444, 643–646.

    Article  PubMed  CAS  Google Scholar 

  14. Halford, S. E. and Marko, J. F. (2004) How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res. 32(10), 3040–3052.

    Article  PubMed  CAS  Google Scholar 

  15. van Zon, J. S., Morelli, M. J., Tanase-Nicola, S., and ten Wolde, P. R. (2006) Diffusion of transcription factors can drastically enhance the noise in gene expression. Biophys. J. 91, 4350–4367.

    Article  PubMed  CAS  Google Scholar 

  16. Amar, P., Ballet, P., Barlovatz-Meimon, G., Benecke, A., Bernot, G., Bouligand, Y., Bourguine, P., Delaplace, F., Delosme, J.-M., Demarty, M., Fishov, I., Fourmentin-Guilbert, J., Fralick, J., Giavitto, J.-L., Gleyse, B., Godin, C., Incitti, R., Képés, F., Lange, C., Sceller, L. L., Loutellier, C., Michel, O., Molina, F., Monnier, C., Natowicz, R., Norris, V., Orange, N., Pollard, H., Raine, D., Ripoll, C., Rouviere-Yaniv, J., Jr., M. S., Soler, P., Tambourin, P., Thellier, M., Tracqui, P., Ussery, D., Vincent, J.-C., Vannier, J.-P., Wiggins, P., and Zemirline, A. (2002) Hyperstructures, genome analysis and Icell. Acta Biotheor. 50(4), 357–373.

    Article  PubMed  Google Scholar 

  17. Chambeyron, S. and Bickmore, W. A. (2004) Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18, 1119–1130.

    Article  PubMed  CAS  Google Scholar 

  18. Bork, P. and Serrano, L. (2005) Towards cellular systems in 4D. Cell 121, 507–509.

    Article  PubMed  CAS  Google Scholar 

  19. Takahashi, K., Arjunan, S. N. V., and Tomita, M. (2005) Space in systems biology of signaling pathways—towards intracellular molecular crowding in silico. FEBS Lett. 579, 1783–1788.

    Article  PubMed  CAS  Google Scholar 

  20. Lemerle, C., Ventura, B. D., and Serrano, L. (2005) Space as the final frontier in stochastic simulations of biological systems. FEBS Lett. 579, 1789–1794.

    Article  PubMed  CAS  Google Scholar 

  21. Turing, A. M. (1952) The chemical basis of morphogenesis. Phil. Trans. Royal Soc. Lond. B 327, 37–72.

    Article  Google Scholar 

  22. Carrero, G., Hendzel, M. J., and de Vries, G. (2005) Modelling the compartmentalization of splicing factors. J. Theor. Biol. 239(3), 298–312.

    Article  PubMed  CAS  Google Scholar 

  23. Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz Jr. K. M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P. A. (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197.

    Article  CAS  Google Scholar 

  24. MacKerell, A. D., Jr., Wiórkiewicz-Kuczera, J., and Karplus, M. (1995) An allatom empirical energy function for the simulation of nucleic acids. J. Am. Chem. Soc. 117, 11946–11975.

    Article  CAS  Google Scholar 

  25. Hobza, P., Kabeláč, M., Šponer, J., Mejzlík, P., and Vondraśêk, J. (1997) Performance of empirical potentials (AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV), semiempirical quantum chemical methods (AM1, MNDO/M, PM3), and ab initio Hartree-Fock method for interaction of DNA bases: comparison with nonempirical beyond Hartree-Fock results. J. Comp. Chem. 18(9), 1136–1150.

    Article  CAS  Google Scholar 

  26. Tozzini, V. (2005) Coarse-grained models for proteins. Curr. Opinion Struct. Biol. 15, 144–150.

    Article  CAS  Google Scholar 

  27. Koga, N. and Takada, S. (2001) Roles of native topology and chain-length scaling in protein folding: a simulation study with a Go-like model. J. Mol Biol. 313, 171–180.

    Article  PubMed  CAS  Google Scholar 

  28. Takagi, F., Koga, N., and Takada, S. (2003) How protein thermodynamics and folding mechanisms are altered by the chaperoning cage: molecular simulations. Proc. Natl. Acad. Sci. USA 100, 11367–11372.

    Article  PubMed  CAS  Google Scholar 

  29. Levy, Y., Caflisch, A., Onuchic, J., and Wolynes, P. (2004) The folding and dimerization of HIV-1 protease: evidence for a stable monomer from simulations. J. Mol. Biol. 340, 67–79.

    Article  PubMed  CAS  Google Scholar 

  30. Chacon, P., Tama, F. and Wriggers, W. (2003) Mega-dalton biomolecular motion captured from electron microscopy reconstructions. J. Mol. Biol. 326, 485–492.

    Article  PubMed  CAS  Google Scholar 

  31. Delarue, M. and Dumas, P. (2004) On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models. Proc. Natl. Acad. Sci. USA 101, 6957–6962.

    Article  PubMed  CAS  Google Scholar 

  32. Tama, F., Miyashita, O., and Brooks, C. I. (2004) Normal mode based flexible fitting of high-resolution structure into low-resolution experimental data from cryo-EM. J. Struct. Biol. 147, 315–326.

    Article  PubMed  CAS  Google Scholar 

  33. Head-Gordon, T. and Brown, S. (2003) Minimalist models for protein folding and design. Curr. Opinion Struct. Biol. 13(2), 160–167.

    Article  CAS  Google Scholar 

  34. Jiang, L., Gao, Y., Mao, F., Liu, Z., and Lai, L. (2001) Potential of mean force for protein-protein interaction studies. Proteins: Struct. Funct. Genet. 46(2), 190–196.

    Google Scholar 

  35. Lyubartsev, A. P. (2005) Multiscale modeling of lipids and lipid bilayers. Eur. Biophys. J. 35, 53–61

    Article  PubMed  CAS  Google Scholar 

  36. Nielsen, S. O., Lopez, C. F., Srinivas, G., and Klein, M. L. (2004) Coarse grain models and the computer simulation of soft materials. J. Phys. Condens. Matter 16, R481–R512.

    Article  CAS  Google Scholar 

  37. Shelley, J. C., Shelley, M. Y., Reeder, R. C., Bandyopadhyay, S., and Klein, M. L. (2001) A coarse grain model for phospholipid simulations. J. Phys. Chem. B 105(16), 4464–4470.

    Article  CAS  Google Scholar 

  38. Shelley, J. C., Shelley, M. Y., Reeder, R. C., Bandyopadhyay, S. Moore, P. B., and Klein, M. L. (2001) Simulations of phospholipids using a coarse grain model. J. Phys. Chem. B 105(40), 9785–9792.

    Article  CAS  Google Scholar 

  39. Dittrich, P., Ziegler, J., and Banzhaf, W. (2001) Artifcial chemistries—a review. Artificial Life 7, 225–275.

    Article  PubMed  CAS  Google Scholar 

  40. Ballet, P., Zemirline, A., and Marce L. (2004) The BioDyn language and simulator. Application to an immune response and E. coli and phage interaction. J. Biol. Phys. Chem. 4(2), 93–101.

    Article  CAS  Google Scholar 

  41. Amar, P., Bernot, G., and Norris, V. (2004) HSIM: a simulation programme to study large assemblies of proteins. J. Biol. Phys. Chem. 4(2), 79–84.

    Article  CAS  Google Scholar 

  42. Lales, C., Parisey, N., Mazat, J.-P., and Beurton-Aimar, M. (2005) Simulation of mitochondrial metabolism using multi-agents system. Proc. MAS * BIOMED’05, 137.

    Google Scholar 

  43. Andrews, S. S. and Bray, D. (2004) Stochastic simulation, of chemical reactions with spatial resolution and single molecule detail. Phys. Biol. 1, 137–151.

    Article  PubMed  CAS  Google Scholar 

  44. Ellis, R. J. (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26(10), 597–603.

    Article  PubMed  CAS  Google Scholar 

  45. Bancock, R. (2004) A role for macromolecular crowding effects in the assembly and function of compartments in the nucleus. J. Struct. Biol. 146, 281–290.

    Article  CAS  Google Scholar 

  46. Banks, D. S. and Fradin, C. (2005) Anomalous diffusion of proteins due to molecular crowding. Biophys. J. 89, 2960–2971.

    Article  PubMed  CAS  Google Scholar 

  47. Soula, H., Robardet, C., Perrin, F., Gripon, S., Beslon, G., and Gandrillon, O. (2005) Modeling the emergence of multi-protein dynamic structures by principles of self-organization through the use of 3DSpi, a multi-agent-based software. BMC Bioinform. 6, 228.

    Article  CAS  Google Scholar 

  48. Zaccai, G. (2000) How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288(5471), 1604–1607.

    Article  PubMed  CAS  Google Scholar 

  49. Nielsen, S. O., Lopez, C. F., Srinivas, G., and Klein, M. L. (2003) A coarse grain model for n-alkanes parameterized from surface tension data. J. Chem Phys. 119(14), 7043–7049.

    Article  CAS  Google Scholar 

  50. Fivash, M., Towler, E. M., and Fisher, R. J. (1998) BIAcore for macromolecular interaction. Curr. Opin. Biotechnol. 9(1), 97–101.

    Article  PubMed  CAS  Google Scholar 

  51. Hoang, T. X., Trovato, A., Seno, F., Banavar, J. R., and Maritan, A. (2004) Geometry and symmetry presculpt the free-energy landscape of proteins. Proc. Natl. Acad. Sci. USA 101(21), 7960–7964.

    Article  PubMed  CAS  Google Scholar 

  52. Berg, H. C. (1993) Random Walks in Biology, 2nd ed. Princeton University Press, Princeton, NJ.

    Google Scholar 

  53. Coulon, A., Soula, H., Mazet, O., Gandrillon, O., and Beslon, G. (2007) Modélisation cellulaire pour l’émergence de structures multiprotéiques auto-oranisées. Tech. Sci. Inform. 26, 123–148.

    Google Scholar 

  54. Buchete, N.-V., Straub, J. E., and Thirumalai, D. (2004) Orientation-dependent coarse-grained potentials derived by statistical analysis of molecular structural databases. Polymer 45(2), 597–608.

    Article  CAS  Google Scholar 

  55. Mukherjee, A., Bhimalapuram, P., and Bagchi, B. (2005) Orientation-dependent potential of mean force for protein folding. J. Chem. Phys. 123, 014901–1–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this protocol

Cite this protocol

Coulon, A., Beslon, G., Gandrillon, O. (2008). Large Multiprotein Structures Modeling and Simulation: The Need for Mesoscopic Models. In: Thompson, J.D., Ueffing, M., Schaeffer-Reiss, C. (eds) Functional Proteomics. Methods in Molecular Biology, vol 484. Humana Press. https://doi.org/10.1007/978-1-59745-398-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-398-1_32

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-971-0

  • Online ISBN: 978-1-59745-398-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics