Skip to main content

Genetic Modification of Murine Dendritic Cells by RNA Transfection

  • Protocol
  • First Online:
Book cover Macrophages and Dendritic Cells

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 531))

Summary

The ability to manipulate in vitro cultured dendritic cells (DCs) by transfection represents an attractive strategy to load these antigen-presenting cells with genetic material encoding various immunogenic epitopes. The gene transfer approach can also be applied to DCs with the aim of expressing immunologically active molecules such as cytokines, costimulatory molecules, or simply to transiently express proteins to perform cell biology studies. Available gene transfer technologies for DCs include both viral and non-viral vector-based approaches. In this chapter, we describe non-viral strategies of RNA transfection. Special emphasis is given to murine bone-marrow-derived DCs, since gene transfer to human DCs has been extensively described in the literature, especially in the context of cancer immunotherapy and other clinical applications. Methods to deliver small interfering RNA (siRNA) to DCs are described as well. Finally, the potential of exogenously delivered RNA to activate DCs is discussed and some practical advice to avoid DC activation is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou Y, Bosch ML, Salgaller ML (2002). Current methods for loading dendritic cells with tumor antigen for the induction of antitumor immunity. J Immunother;25(4):289–303.

    Article  PubMed  CAS  Google Scholar 

  2. Lundqvist A, Noffz G, Pavlenko M, et al. (2002). Nonviral and viral gene transfer into different subsets of human dendritic cells yield comparable efficiency of transfection. J Immunother;25(6):445–54.

    Article  PubMed  CAS  Google Scholar 

  3. Jenne L, Schuler G, Steinkasserer A (2001). Viral vectors for dendritic cell-based immunotherapy. Trends Immunol;22(2):102–7.

    Article  PubMed  CAS  Google Scholar 

  4. Monahan SJ, Salgaller ML (1999). Viral vectors for gene transfer into antigen presenting cells. Curr Opin Mol Ther;1(5):558–64.

    PubMed  CAS  Google Scholar 

  5. Van Tendeloo VF, Snoeck HW, Lardon F, et al. (1998). Nonviral transfection of distinct types of human dendritic cells: high-efficiency gene transfer by electroporation into hematopoietic progenitor – but not monocyte-derived dendritic cells. Gene Ther;5(5):700–7.

    Article  PubMed  CAS  Google Scholar 

  6. Van Tendeloo VF, Van Broeckhoven C, Berneman ZN (2001). Gene-based cancer vaccines: an ex vivo approach. Leukemia;15(4):545–58.

    Article  PubMed  CAS  Google Scholar 

  7. Strobel I, Berchtold S, Gotze A, Schulze U, Schuler G, Steinkasserer A (2000). Human dendritic cells transfected with either RNA or DNA encoding influenza matrix protein M1 differ in their ability to stimulate cytotoxic T lymphocytes. Gene Ther;7(23):2028–35.

    Article  PubMed  CAS  Google Scholar 

  8. Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ (1995). Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem;270(32):18997–9007.

    Article  PubMed  CAS  Google Scholar 

  9. Weissman D, Ni H, Scales D, et al. (2000). HIV gag mRNA transfection of dendritic cells (DC) delivers encoded antigen to MHC class I and II molecules, causes DC maturation, and induces a potent human in vitro primary immune response. J Immunol;165(8):4710–7.

    PubMed  CAS  Google Scholar 

  10. Ceppi M, de Bruin MG, Seuberlich T, et al. (2005). Identification of classical swine fever virus protein E2 as a target for cytotoxic T cells by using mRNA-transfected antigen-presenting cells. J Gen Virol;86(Pt 9):2525–34.

    Article  PubMed  CAS  Google Scholar 

  11. Lelouard H, Gatti E, Cappello F, Gresser O, Camosseto V, Pierre P (2002). Transient aggregation of ubiquitinated proteins during dendritic cell maturation. Nature;417(6885):177–82.

    Article  PubMed  CAS  Google Scholar 

  12. Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E (1998). Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol;16(4):364–9.

    Article  PubMed  CAS  Google Scholar 

  13. Van Tendeloo VF, Ponsaerts P, Lardon F, et al. (2001). Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood;98(1):49–56.

    Article  PubMed  CAS  Google Scholar 

  14. Iizuka N, Najita L, Franzusoff A, Sarnow P (1994). Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol Cell Biol;14(11):7322–30.

    PubMed  CAS  Google Scholar 

  15. Boczkowski D, Nair SK, Snyder D, Gilboa E (1996). Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med;184(2):465–72.

    Article  PubMed  CAS  Google Scholar 

  16. Ponsaerts P, Van Tendeloo VF, Berneman ZN (2003). Cancer immunotherapy using RNA-loaded dendritic cells. Clin Exp Immunol;134(3):378–84.

    Article  PubMed  CAS  Google Scholar 

  17. Van Meirvenne S, Straetman L, Heirman C, et al. (2002). Efficient genetic modification of murine dendritic cells by electroporation with mRNA. Cancer Gene Ther;9(9):787–97.

    Article  PubMed  CAS  Google Scholar 

  18. Ceppi M, Ruggli N, Tache V, Gerber H, McCullough KC, Summerfield A (2005). Double-stranded secondary structures on mRNA induce type I interferon (IFN alpha/beta) production and maturation of mRNA-transfected monocyte-derived dendritic cells. J Gene Med;7(4):452–65.

    Article  PubMed  CAS  Google Scholar 

  19. Bacci A, Montagnoli C, Perruccio K, et al. (2002). Dendritic cells pulsed with fungal RNA induce protective immunity to Candida albicans in hematopoietic transplantation. J Immunol;168(6):2904–13.

    PubMed  CAS  Google Scholar 

  20. Bozza S, Perruccio K, Montagnoli C, et al. (2003). A dendritic cell vaccine against invasive aspergillosis in allogeneic hematopoietic transplantation. Blood;102(10):3807–14.

    Article  PubMed  CAS  Google Scholar 

  21. Heiser A, Coleman D, Dannull J, et al. (2002). Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest;109(3):409–17.

    PubMed  CAS  Google Scholar 

  22. Heiser A, Maurice MA, Yancey DR, Coleman DM, Dahm P, Vieweg J (2001). Human dendritic cells transfected with renal tumor RNA stimulate polyclonal T-cell responses against antigens expressed by primary and metastatic tumors. Cancer Res;61(8):3388–93.

    PubMed  CAS  Google Scholar 

  23. Malone RW, Felgner PL, Verma IM (1989). Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci U S A;86(16):6077–81.

    Article  PubMed  CAS  Google Scholar 

  24. Mitchell DA, Nair SK (2000). RNA-transfected dendritic cells in cancer immunotherapy. J Clin Invest;106(9):1065–9.

    Article  PubMed  CAS  Google Scholar 

  25. Holtkamp S, Kreiter S, Selmi A, et al. (2006). Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood;108(13):4009–17.

    Article  PubMed  CAS  Google Scholar 

  26. Diebold SS, Montoya M, Unger H, et al. (2003). Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature;424(6946):324–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by grants to PP from CNRS-INSERM, the Ministère de la Recherche et de la Technologie (ACI), La Ligue Nationale Contre le Cancer, and the Human Frontier of Science Program (HSFP). MC is supported by the Swiss National Science Foundation (SNF) and EKS is supported by the HSFP. The authors would like to thank Dr. Peter Ponsaerts (University of Antwerp, Belgium) for having provided the plasmid pSP64/GFP, Professor Eli Gilboa (Duke University, USA) for the plasmid pGEM4Z/GFP/A64, and Professor Matthias Hentze (EMBL, Heidelberg, Germany) for the plasmid pT3LUC(pA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Ceppi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ceppi, M., Schmidt, E., Pierre, P. (2009). Genetic Modification of Murine Dendritic Cells by RNA Transfection. In: Reiner, N. (eds) Macrophages and Dendritic Cells. Methods in Molecular Biology™, vol 531. Humana Press. https://doi.org/10.1007/978-1-59745-396-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-396-7_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-972-7

  • Online ISBN: 978-1-59745-396-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics