Skip to main content

Animal Models of Spontaneous Autoimmune Disease

Type 1 Diabetes in the Nonobese Diabetic Mouse

  • Protocol
Immunological Tolerance

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 380))

Abstract

The nonobese diabetic (NOD) mouse represents probably the best spontaneous model for a human autoimmune disease. It has provided not only essential information on type 1 diabetes (T1D) pathogenesis, but also valuable insights into mechanisms of immunoregulation and tolerance. Importantly, it allows testing of immunointervention strategies potentially applicable to man. The fact that T1D incidence in the NOD mouse is sensitive to environmental conditions, and responds, sometimes dramatically, to immunomanipulation, does not represent a limit of the model, but is likely to render it even more similar to its human counterpart. In both cases, macrophages, dendritic cells, CD4+, CD8+, and B cells are present in the diseased islets. T1D is a polygenic disease, but, both in human and in NOD mouse T1D, the primary susceptibility gene is located within the MHC. On the other hand, T1D incidence is significantly higher in NOD females, although insulitis is similar in both sexes, whereas in humans, T1D occurs with about equal frequency in males and females. In addition, NOD mice have a more widespread autoimmune disorder, which is not the case in the majority of human T1D cases. Despite these differences, the NOD mouse remains the most representative model of human T1D, with similarities also in the putative target autoantigens, including glutamic acid decarboxylase IA-2, and insulin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bach, J.-F. (1994) Insulin-dependent diabetes mellitus as an autoimmune disease. Endocrine Rev. 15, 516–542.

    CAS  Google Scholar 

  2. Adorini, L., Gregori, S., and Harrison, L. (2002) Understanding autoimmune diabetes: insights from mouse models. Trends Mol. Med. 8, 31–38.

    Article  PubMed  CAS  Google Scholar 

  3. Kikutani, H. and Makino, S. (1992) The murine autoimmune diabetes model: NOD and related strains. Adv. Immunol. 51, 285–322.

    Article  PubMed  CAS  Google Scholar 

  4. Serreze, D. V., Gaedeke, J. W., and Leiter, E. H. (1993) Hematopoietic stem-cell defects underlying abnormal macrophage development and maturation in NOD/Lt mice: defective regulation of cytokine receptors and protein kinase C. Proc. Natl. Acad. Sci. USA 90, 9625–9629.

    Article  PubMed  CAS  Google Scholar 

  5. Kataoka, S., Satoh, J., Fujiya, H., et al. (1983) Immunologic aspects of the nonobese diabetic (NOD) mouse. Abnormalities of cellular immunity. Diabetes 32, 247–253.

    Article  PubMed  CAS  Google Scholar 

  6. Ogasawara, K., Hamerman, J. A., Hsin, H., et al. (2003) Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity 18, 41–51.

    Article  PubMed  CAS  Google Scholar 

  7. Naumov, Y. N., Bahjat, K. S., Gausling, R., et al. (2001) Activation of CD1 d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc. Natl. Acad. Sci. USA 98, 13,838–13,843.

    Article  PubMed  CAS  Google Scholar 

  8. Wang, Geng, Y. and Wang, R. (2001) CD 1-restricted NK T cells protect nonobese diabetic mice from developing diabetes. J. Exp. Med. 194, 313–320.

    Article  PubMed  Google Scholar 

  9. Salomon, B., Lenschow, D. J., Rhee, L., et al. (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440.

    Article  PubMed  CAS  Google Scholar 

  10. Gregori, S., Giarratana, N., Smiroldo, S., and Adorini, L. (2003) Dynamics of pathogenic and suppressor T cells in autoimmune diabetes development. J. Immunol. 171, 4040–4047.

    PubMed  CAS  Google Scholar 

  11. Baxter, A. G. and Cooke, A. (1993) Complement lytic activity has no role in the pathogenesis of autoimmune diabetes in NOD mice. Diabetes 42, 1574–1578.

    Article  PubMed  CAS  Google Scholar 

  12. Makino, S., Kunimoto, K., Muraoka, Y., Mizushima, Y., Katagiri, K., and Tochino, Y. (1980) Breeding of a non-obese, diabetic stain of mice. Exp. Animal 29, 1–13.

    CAS  Google Scholar 

  13. Pozzilli, P., Signore, A., Williams, A. J., and Beales, P. E. (1993) NOD mouse colonies around the world: recent facts and figures. Immunol. Today 14, 193–196.

    Article  PubMed  CAS  Google Scholar 

  14. Andre, I., Gonzalez, A., Wang, B., Katz, J., Benoist, C., and Mathis, D. (1996) Checkpoints in the progression of autoimmune disease: lessons from diabetes models. Proc. Natl. Acad. Sci. USA 93, 2260–2263.

    Article  PubMed  CAS  Google Scholar 

  15. Yoon, J. W. (1990) The role of viruses and environmental factors in the induction of diabetes. Curr. Top. Microbiol. Immunol. 164, 95–123.

    Article  PubMed  CAS  Google Scholar 

  16. Yoon, J. W. (1992) Induction and prevention of type 1 diabetes mellitus by viruses. Diabete Metab. 18, 378–386.

    PubMed  CAS  Google Scholar 

  17. Davydova, B., Harkonen, T., Kaialainen, S., Hovi, T., Vaarala, O., and Roivainen, M. (2003) Coxsackievirus immunization delays onset of diabetes in non-obese diabetic mice. J. Med. Virol. 69, 510–520.

    Article  PubMed  CAS  Google Scholar 

  18. Bach, J. F. (2005) Infections and autoimmune diseases. J. Autoimmun. 25, 74–80.

    Article  PubMed  CAS  Google Scholar 

  19. Williams, A. J., Krug, J., Lampeter, E. F., et al. (1990) Raised temperature reduces the incidence of diabetes in the NOD mouse. Diabetologia 33, 635–637.

    Article  PubMed  CAS  Google Scholar 

  20. Like, A. A. and Rossini, A.A. (1976) Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 193, 415–417.

    Article  PubMed  CAS  Google Scholar 

  21. Malaisse, W. J. (1982) Alloxan toxicity to the pancreatic B cell. A new hypothesis. Biochem. Pharmacol. 31, 3527–3534.

    Article  PubMed  CAS  Google Scholar 

  22. Kolb, H. and Kroencke, K.-D. (1993) IDDM. Lessons from the low-dose streptozocin model in mice. Diabetes Rev. 1, 116–126.

    Google Scholar 

  23. Cossel, L., Schneider, E., Kuttler B, et al. (1985) Low dose streptozotocin induced diabetes in mice. Metabolic, light microscopical, histochemical, immunofluorescence microscopical, electron microscopical and morphometrical findings. Exp. Clin. Endocrinol. 85, 7–26.

    Article  PubMed  CAS  Google Scholar 

  24. Gerling, I. C., Friedman, H., Greiner, D. L., Shultz, L. D., and Leiter, E.H. (1994) Multiple low-dose streptozocin-induced diabetes in NOD-scid/scid mice in the absence of functional lymphocytes. Diabetes 43, 433–440.

    Article  PubMed  CAS  Google Scholar 

  25. Harada, M. and Makino, S. (1984) Promotion of spontaneous diabetes in nonobese diabetes-prone mice by cyclophosphamide. Diabetologia 27, 604–606.

    Article  PubMed  CAS  Google Scholar 

  26. Kay, T. W., Campbell, I. L., and Harrison, L. (1991) Characterization of pancreatic T lymphocytes associated with beta cell destruction in the non-obese diabetic (NOD) mouse. J. Autoimmun. 4, 263–276.

    Article  PubMed  CAS  Google Scholar 

  27. Yasunami, R. and Bach, J.-F. (1988) Anti-suppressor effect of cyclophosphamide on the development of spontaneous diabetes in NOD mice. Eur. J. Immunol. 18, 481–484.

    Article  PubMed  CAS  Google Scholar 

  28. Christianson, S. W., Shultz, L. D., and Leiter, E. H. (1993) Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice. Relative contributions of CD4+ and CD8+ T-cells from diabetic versus prediabetic NOD.NON-Thy-1a donors. Diabetes 42, 44–55.

    Article  PubMed  CAS  Google Scholar 

  29. Wicker, L. S., Miller, B. J., and Mullen, Y. (1986) Transfer of autoimmune diabetes mellitus with splenocytes from nonobese diabetic (NOD) mice. Diabetes 35, 855–860.

    Article  PubMed  CAS  Google Scholar 

  30. Bendelac, A., Carnaud, C., Boitard, C., and Bach, J.-F. (1987) Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+ T cells. J. Exp. Med. 166, 823–832.

    Article  PubMed  CAS  Google Scholar 

  31. Wong, F. S., Visintin, I., Wen, L., Flavell, R. A., and Janeway, A., Jr. (1996) CD8 T cell clones from young nonobese diabetic (NOD) islets can transfer rapid onset of diabetes in NOD mice in the absence of CD4 cells. J. Exp. Med. 183, 67–76.

    Article  PubMed  CAS  Google Scholar 

  32. Haskins, K. and Wegmann, D. (1996) Diabetogenic T-cell clones. Diabetes 45, 1299–1305.

    Article  PubMed  CAS  Google Scholar 

  33. Chatenoud, L., Thervet, E., Primo, J., and Bach, J.F. (1994) Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc. Natl. Acad. Sci. USA 91, 123–127.

    Article  PubMed  CAS  Google Scholar 

  34. Wang, B., Gonzales, A., Benoist, C., and Mathis, D. (1996) The role of CD8+ cells in the initiation of insulin-dependent diabetes mellitus. Eur. J. Immunol. 26, 1762–1769.

    Article  PubMed  CAS  Google Scholar 

  35. Shizuru, J. A., Taylor-Edwards, C., Banks, B. A., Gregory, A. K., and Fathman, G. (1988) Immunotherapy of the nonobese diabetic mouse: treatment with an antibody to T-helper lymphocytes. Science 240, 659–662.

    Article  PubMed  CAS  Google Scholar 

  36. Kurasawa, K., Sakamoto, A., Maeda, T., et al. (1993) Short-term administration of anti-L3T4 MoAb prevents diabetes in NOD mice. Clin. Exp. Immunol. 91, 376–380.

    Article  PubMed  CAS  Google Scholar 

  37. Mori, Y., Suko, M., Okudaira, H., et al. (1986) Preventive effects of cyclosporin on diabetes in NOD mice. Diabetologia 29, 244–247.

    Article  PubMed  CAS  Google Scholar 

  38. Serreze, D. V., Fleming, S. A., Chapman, H. D., Richard, S. D., Leiter, E. H., and Tisch, R. M. (1998) B lymphocytes are critical antigen-presenting cells for the initiation of T cell-mediated autoimmune diabetes in nonobese diabetic mice. J. Immunol. 161, 3912–3918.

    PubMed  CAS  Google Scholar 

  39. Wicker, L., Todd, J., and Peterson, L. (1995) Genetic control of autoimmune diabetes in the NOD mouse. Annu. Rev. Immunol. 13, 179–200.

    Article  PubMed  CAS  Google Scholar 

  40. Falcone, M. and Sarvetnick, N. (1999) Cytokines that regulate autoimmune responses. Curr. Opin. Immunol. 11, 670–676.

    Article  PubMed  CAS  Google Scholar 

  41. Balasa, B., A. La Cava, K. Van Gunst, L., et al. (2000) A mechanism for IL-10-mediated diabetes in the nonobese diabetic (NOD) mouse: ICAM-1 deficiency blocks accelerated diabetes. J. Immunol. 165, 7330.

    PubMed  CAS  Google Scholar 

  42. Kawamoto, S., Nitta, Y., Tashiro, F., et al. (2001) Suppression of T(h)1 cell activation and prevention of autoimmune diabetes in NOD mice by local expression of viral IL-10. Int. Immunol. 13, 685–694.

    Article  PubMed  CAS  Google Scholar 

  43. Green, E. A., Eynon, E. E., and Flavell, R.A. (1998) Local expression of TNFalpha in neonatal NOD mice promotes diabetes by enhancing presentation of islet antigens. Immunity 9, 733–743.

    Article  PubMed  CAS  Google Scholar 

  44. Grewal, I. S., Grewal, K. D., Wong, F. S., Picarella, D. E., Janeway A., Jr.,and Flavell, R.A. (1996) Local expression of transgene encoded TNF alpha in islets prevents autoimmune diabetes in nonobese diabetic (NOD) mice by preventing the development of auto-reactive islet-specific T cells. J. Exp. Med. 184, 1963–1974.

    Article  PubMed  CAS  Google Scholar 

  45. Wong, S., Guerder, S., Visintin, I., et al. (1995) Expression of the co-stimulator molecule B7-1 in pancreatic beta-cells accelerates diabetes in the NOD mouse. Diabetes 44, 326–329.

    Article  PubMed  CAS  Google Scholar 

  46. Lenschow, D. J., Herold, K. C., Rhee, L., et al. (1996) CD28/B7 regulation of TH1 and TH2 subsets in the development of autoimmune diabetes. Immunity 5, 285–293.

    Article  PubMed  CAS  Google Scholar 

  47. Hulbert, C., Riseili, B., Rojas, M., and Thomas, J. (2001) B cell specificity contributes to the outcome of diabetes in nonobese diabetic mice. J. Immunol. 167, 5535–5538.

    PubMed  CAS  Google Scholar 

  48. Petrovsky, N., Silva, D., Socha, L., Slattery, R., and Charlton, B. (2002) The role of Fas ligand in beta cell destruction in autoimmune diabetes of NOD mice. Ann. NYAcad. Sci. 958, 204–208.

    Article  CAS  Google Scholar 

  49. Savinov, A., Tcherepanov, A., Green, E., Flavell, R., and Chervonsky, A. (2003) Contribution of Fas to diabetes development. Proc. Natl. Acad. Sci. USA 100, 628–632.

    Article  PubMed  CAS  Google Scholar 

  50. Sung, H., Juang, J., Lin, Y., et al. (2004) Transgenic expression of decoy receptor 3 protects islets from spontaneous and chemical-induced autoimmune destruction in nonobese diabetic mice. J. Exp. Med. 199, 1143–1151.

    Article  PubMed  CAS  Google Scholar 

  51. Katz, J., Benoist, C., and Mathis, D. (1993) Major histocompatibility complex class I molecules are required for the development of insulitis in non-obese diabetic mice. Eur. J. Immunol. 23, 3358–3360.

    Article  PubMed  CAS  Google Scholar 

  52. Wicker, L. S., Leiter, E. H., Todd, J.A., et al. (1994) Beta 2-microglobulindeficient NOD mice do not develop insulitis or diabetes. Diabetes 43, 500–504.

    Article  PubMed  CAS  Google Scholar 

  53. Mora, C., Wong, F. S., Chang, H., and Flavell, R.A. (1999) Pancreatic infiltration but not diabetes occurs in the relative absence of MHC class II-restricted CD4 T cells: studies using NOD/CIITA-deficient mice. J. Immunol. 162, 4576–4588.

    PubMed  CAS  Google Scholar 

  54. Kay, T. W. H., Parker, J. L., Stephens, L. A., Thomas, H. E., and Allison, J. (1996) RIP-b2-microglobulin transgene expression restores insulitis, but not diabetes, in b2-microglobulinnull nonobese diabetic mice. J. Immunol. 157, 3688–3693.

    PubMed  Google Scholar 

  55. Trembleau, S., Germann, T., Gately, M. K., and Adorini, L. (1995) The role of IL-12 in the induction of organ-specific autoimmune diseases. Immunol. Today 16, 383–386.

    Article  PubMed  CAS  Google Scholar 

  56. Trembleau, S., Penna, G., Gregori, S., et al. (1999) Pancreas-infiltrating Th1 cells and diabetes develop in IL-12-deficient nonobese diabetic mice. J. Immunol. 163, 2960–2968.

    PubMed  CAS  Google Scholar 

  57. Trembleau, S., Penna, G., Gregori, S., Giarratana, N., and Adorini, L. (2003) IL-12 administration accelerates autoimmune diabetes in both wild-type and IFN-gamma-deficient nonobese diabetic mice, revealing pathogenic and protective effects of IL-12-inducedIFN-gamma. J. Immunol. 170, 5491–5501.

    PubMed  CAS  Google Scholar 

  58. Balasa, B., Van Gunst, K., Jung, N., Katz, J. D., and Sarvetnick, N. (2000) IL-10 deficiency does not inhibit insulitis and accelerates cyclophosphamide-induced diabetes in the nonobese diabetic mouse. Cell. Immunol. 202, 97–102.

    Article  PubMed  CAS  Google Scholar 

  59. Wang, B., Gonzalez, A., Hoglund, P., Katz, J. D., Benoist, C., and Mathis, D. (1998) Interleukin-4 deficiency does not exacerbate disease in NOD mice. Diabetes 47, 1207–1211.

    Article  PubMed  CAS  Google Scholar 

  60. Falcone, M., Yeung, B., Tucker, L., Rodriguez, E., Krahl, T., and Sarvetnick, N. (2001) IL-4 triggers autoimmune diabetes by increasing self-antigen presentation within the pancreatic Islets. Clin. Immunol. 98, 190–199.

    Article  PubMed  CAS  Google Scholar 

  61. Green, E. A., Wong, F. S., Eshima, Mora, and Flavell, R. A. (2000) Neonatal tumor necrosis factor alpha promotes diabetes in nonobese diabetic mice by CD154-independent antigen presentation to CD8(+) T cells. J. Exp. Med. 191, 225–238.

    Article  PubMed  CAS  Google Scholar 

  62. Martin, S., van den Engel, N., Vinke, A., Heidenthal, E., Schulte, B., and Kolb, H. (2001) Dominant role of intercellular adhesion molecule-1 in the pathogenesis of autoimmune diabetes in non-obese diabetic mice. J. Autoimmun. 17, 109.

    Article  PubMed  CAS  Google Scholar 

  63. Anderson, M. S., Venanzi, E. S., Chen, Z., Berzins, S. P., Benoist, C., and Mathis, D. (2005) The cellular mechanism of Aire control of T cell tolerance. Immunity 23, 227–239.

    Article  PubMed  CAS  Google Scholar 

  64. Villasenor, J., Benoist, C., and Mathis, D. (2005) AIRE and APECED: molecular insights into an autoimmune disease. Immunol. Rev. 204, 156–164.

    Article  PubMed  CAS  Google Scholar 

  65. Lohmann, T., Leslie, R. D., and Londei, M. (1996) T cell clones to epitopes of glutamic acid decarboxylase 65 raised from normal subjects and patients with insulin-dependent diabetes. J. Autoimmun. 9, 385–389.

    Article  PubMed  CAS  Google Scholar 

  66. Semana, G., Gausling, R., Jackson, R. A., and Hafler, D. A. (1999) T cell autore-activity to proinsulin epitopes in diabetic patients and healthy subjects. J. Autoimmun. 12, 259–267.

    Article  PubMed  CAS  Google Scholar 

  67. Miyazaki, T., Uno, M., Uehira, M., et al. (1990) Direct evidence for the contribution of the unique I-ANOD to the development of insulitis in non-obese diabetic mice. Nature 345, 722–724.

    Article  PubMed  CAS  Google Scholar 

  68. Nishimoto, H., Kikutani, H., Yamamura, K. L, and Kishimoto, T. (1987) Prevention of autoimmune insulitis by expression of I-E molecules in NOD mice. Nature 328, 432–434.

    Article  PubMed  CAS  Google Scholar 

  69. Uehira, M., Onu, M., Miyazaki, J., Nishimoto, H., Kishimoto, T., and Yamamura, K. (1989) Development of autoimmune insulitis is prevented in E alpha d but not in A beta k NOD transgenic mice. Int. Immunol. 1, 209–213.

    Article  PubMed  CAS  Google Scholar 

  70. Lund, T., O’Reilly, L., Hutchings, P., et al. (1990) Prevention of insulin-dependent diabetes in non-obese diabetic mice by transgenes encoding modified I-A b-chain or normal I-E a-chain. Nature 345, 727–729.

    Article  PubMed  CAS  Google Scholar 

  71. Boehme, J., Schuhbaur, B., Kanagawa, O., Benoist, C., and Mathis, D. (1990) MHC-linked protection from diabetes dissociated from clonal deletion of T cells. Science 249, 293–295.

    Article  Google Scholar 

  72. Trembleau, S., Gregori, S., Penna, G., Gorny, I., and Adorini, L. (2001) IL-12 administration reveals diabetogenic T cells in genetically resistant I-Ealpha-transgenic nonobese diabetic mice: resistance to autoimmune diabetes is associated with binding of Ealpha-derived peptides to the I-A(g7) molecule. J. Immunol. 167, 4104–4114.

    PubMed  CAS  Google Scholar 

  73. Schmidt, D., Amrani, A., Verdaguer, J., Bou, S., and Santamaria, P. (1999) Autoantigen-independent deletion of diabetogenic CD4+ thymocytes by protective MHC class II molecules. J. Immunol. 162, 4627–4636.

    PubMed  CAS  Google Scholar 

  74. Carrasco-Marin, E., Shimizu, J., Kanagawa, O., and Unanue, E. (1996) The class II MHC I-Ag7 molecules from non-obese diabetic mice are poor peptide binders. J. Immunol. 156, 450–458.

    PubMed  CAS  Google Scholar 

  75. Ridgway, W. M. and Fathman, C. G. (1999) MHC structure and autoimmune T cell repertoire development. Curr. Opin. Immunol. 11, 638–642.

    Article  PubMed  CAS  Google Scholar 

  76. Harrison, L. C., Honeyman, M. C., Trembleau, S., et al. (1997) A peptide-binding motif for I-Ag7, the class II MHC molecule of NOD and Biozzi AB/H mice. J. Exp. Med. 185, 1013–1021.

    Article  PubMed  CAS  Google Scholar 

  77. Corper, A. L., Stratmann, T., Apostolopoulos, V., et al. (2000) A structural framework for deciphering the link between I-Ag7 and autoimmune diabetes. Science 288, 505–511.

    Article  PubMed  CAS  Google Scholar 

  78. French, M., Allison, J., Cram, D. S., et al. (1997) Transgenic expression of mouse proinsulin II prevents diabetes in nonobese diabetic mice. Diabetes 46, 34–39.

    Article  PubMed  CAS  Google Scholar 

  79. Wong, F. S., Karttunen, J., Dumont, C., et al. (1999) Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library. Nat. Med. 5, 1026–1031.

    Article  PubMed  CAS  Google Scholar 

  80. Yoon, J. W., Yoon, S., Lim, H. W., et al. (1999) Control of autoimmune diabetes in NOD mice by GAD expression or suppression in beta cells. Science 284, 1183–1187.

    Article  PubMed  CAS  Google Scholar 

  81. Ranheim, E. A., Tarbell, K., Krogsgaard, M., et al. (2004) Selection of aberrant class II restricted CD8+ T cells in NOD mice expressing a glutamic acid decarboxylase (GAD)65-specific T cell receptor transgene. Autoimmunity 37, 555–567.

    Article  PubMed  CAS  Google Scholar 

  82. Trembleau, S., Penna, G., Gregori, S., Magistrelli, G., Isacchi, A., and Adorini, L. (2000) Early Th1 response in unprimed nonobese diabetic mice to the tyrosine phosphatase-like insulinoma-associated protein 2, an autoantigen in type 1 diabetes. J. Immunol. 165, 6748–6755.

    PubMed  CAS  Google Scholar 

  83. Trembleau, S., Penna, G., Bosi, E., Mortara, A., Gately, M.K., and Adorini, L. (1995) IL-12 administration induces Th1 cells and accelerates autoimmune diabetes in NOD mice. J. Exp. Med. 181, 817–821.

    Article  PubMed  CAS  Google Scholar 

  84. Nitta, Y., Kawamoto, S., Tashiro, F., et al. (2001) IL-12 plays a pathologic role at the inflammatory loci in the development of diabetes in NOD mice. J. Autoimmun. 16, 97–104.

    Article  PubMed  CAS  Google Scholar 

  85. Serreze, D. V., Chapman, H. D., Post, M., Johnson, E. A., Suarez-Pinzon, W. L., and Rabinovitch, A. (2001) Th1 to Th2 cytokine shifts in nonobese diabetic mice: sometimes an outcome, rather than the cause, of diabetes resistance elicited by immunostimulation. J. Immunol. 166, 1352–1359.

    PubMed  CAS  Google Scholar 

  86. Mueller, R., Krahl, T., and Sarvetnick, N. (1996) Pancreatic expression of interleukin-4 abrogates insulitis and autoimmune diabetes in nonobese diabetic (NOD) mice. J. Exp. Med. 184, 1093–1099.

    Article  PubMed  CAS  Google Scholar 

  87. Mueller, R., Bradley, L. M., Krahl, T., and Sarvetnick, N. (1997) Mechanism underlying counterregulation of autoimmune diabetes by IL-4. Immunity 7, 411–418.

    Article  PubMed  CAS  Google Scholar 

  88. Pakala, S. V., Kurrer, M. O., and Katz, J. D. (1997) T helper 2 (Th2) T cells induce acute pancreatitis and diabetes in immune-compromised nonobese diabetic (NOD) mice. J. Exp. Med. 186, 299–306.

    Article  PubMed  CAS  Google Scholar 

  89. Godfrey, D. L, Hammond, K. J., Poulton, L. D., Smyth, M. J., and Baxter, A. G. (2000) NKT cells: facts, functions and fallacies. Immunol. Today 21, 573–583.

    Article  PubMed  CAS  Google Scholar 

  90. Hammond, K. J., Pellicci, D. G., Poulton, L. D., et al. (2001) CD 1d-restricted NKT cells: an interstrain comparison. J. Immunol. 167, 1164–1173.

    PubMed  CAS  Google Scholar 

  91. Baxter, A. G., Kinder, S. J., Hammond, J., Scollay, R., and Godfrey, D. I. (1997) Association between alphabetaTCR+CD4-CD8-T-cell deficiency and IDDM in NOD/Lt mice. Diabetes 46, 572–582.

    Article  PubMed  CAS  Google Scholar 

  92. Hammond, J., Poulton, L. D., Palmisano, L. J., Silveira, P. A., Godfrey, D. I., and Baxter, A. G. (1998) alpha/beta-T cell receptor (TCR)+CD4-CD8-(NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J. Exp. Med. 187, 1047–1056.

    Article  PubMed  CAS  Google Scholar 

  93. Lehuen, A., Lantz, O., Beaudoin, L., et al. (1998) Overexpression of natural killer T cells protects Valpha14-Jalpha281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med. 188, 1831–1839.

    Article  PubMed  CAS  Google Scholar 

  94. Sharif, S., Arreaza, G. A., Zucker, P., et al. (2001) Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nat. Med. 7, 1057–1062.

    Article  PubMed  CAS  Google Scholar 

  95. Hong, S., Wilson, M. T., Serizawa, I., et al. (2001) The natural killer T-cell ligand alpha-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat. Med. 7, 1052–1056.

    Article  PubMed  CAS  Google Scholar 

  96. Shi, F. D., Flodstrom, M., Balasa, B., et al. (2001) Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc. Natl. Acad. Sci. USA 98, 6777–6782.

    Article  PubMed  CAS  Google Scholar 

  97. Shevach, E. M. (2000) Regulatory T cells in autoimmunity. Annu. Rev. Immunol. 18, 423–449.

    Article  PubMed  CAS  Google Scholar 

  98. Lepault, F. and Gagnerault, M. (2000) Characterization of peripheral regulatory CD4+ T cells that prevent diabetes onset in nonobese diabetic mice. J. Immunol. 164, 240–247.

    PubMed  CAS  Google Scholar 

  99. Hanninen, A. and Harrison, L. (2000) Gamma delta T cells as mediators of mucosal tolerance: the autoimmune diabetes model. Immunol. Rev. 173, 109–119.

    Article  PubMed  CAS  Google Scholar 

  100. Sakaguchi, S.(2000) Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101, 455–458.

    Google Scholar 

  101. Shevach, E. M. (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat. Rev. Immunol. 2, 389.

    PubMed  CAS  Google Scholar 

  102. Hori, S., Nomura, T., and Sakaguchi, S. (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061.

    Article  PubMed  CAS  Google Scholar 

  103. Fontenot, J. D., Gavin, M.A., and Rudensky, A. Y. (2003) Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat. Immunol. 4, 330–336.

    Article  PubMed  CAS  Google Scholar 

  104. Khattri, R., Yasayko, S. A., and Ramsdell, F. (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342.

    Article  PubMed  CAS  Google Scholar 

  105. Read, S., Malmstrom, V., and Powrie, F. (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302.

    Article  PubMed  CAS  Google Scholar 

  106. Stephens, L. A. and Mason, D. (2000) CD25 is a marker for CD4+ thymocytes that prevent autoimmune diabetes in rats, but peripheral T cells with this function are found in both CD25+ and CD25-subpopulations. J. Immunol. 165, 3105–3110.

    PubMed  CAS  Google Scholar 

  107. Wu, A. J., Hua, H., Munson, S. H., and McDevitt, H. (2002) Tumor necrosis factor-alpha regulation of CD4+CD25+ T cell levels in NOD mice. Proc. Natl. Acad. Sci. USA 99, 12,287–12,292.

    Article  PubMed  CAS  Google Scholar 

  108. Chen, Z., Benoist, C., and Mathis, D. (2005) How defects in central tolerance impinge on a deficiency in regulatory T cells. Proc. Natl. Acad. sei. USA 102, 14,735–14,740.

    Article  CAS  Google Scholar 

  109. Szanya, V., Ermann, J., Taylor, C., Holness, C., and Fathman, G. (2002) The subpopulation of CD4+CD25+ splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high levels of CCR7. J. Immunol. 169, 2461–2465.

    PubMed  CAS  Google Scholar 

  110. Tang, Q., Henriksen, K. J., Bi, M., et al. (2004) In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med. 199, 1455–1465.

    Article  PubMed  CAS  Google Scholar 

  111. Horwitz, D. A., Zheng, S. G., Gray, J. D., Wang, J. H., Ohtsuka, K., and Yamagiwa, S. (2004) Regulatory T cells generated ex vivo as an approach for the therapy of autoimmune disease. Semin. Immunol. 16, 135–143.

    Article  PubMed  CAS  Google Scholar 

  112. Zheng, S. G., Wang, J. H., Gray, J. D., Soucier, H., and Horwitz, D.A. (2004) Natural and induced CD4+CD25+ cells educate CD4+CD25-cells to develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J. Immunol. 172, 5213–5221.

    PubMed  CAS  Google Scholar 

  113. Yamazaki, S., Iyoda, T., Tarbell, K., et al. (2003) Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med. 198, 235–247.

    Article  PubMed  CAS  Google Scholar 

  114. Tarbell, K. V., Yamazaki, S., Olson, K., Toy, P., and Steinman, R.M. (2004) CD25+ CD4+ T cells, expanded with dendritic cells presenting a single autoanti-genic peptide, suppress autoimmune diabetes. J. Exp. Med. 199, 1467–1477.

    Article  PubMed  CAS  Google Scholar 

  115. Belghith, M., Bluestone, J. A., Barriot, S., Megret, J., Bach, J. F., and Chatenoud, L. (2003) TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat. Med. 9, 1202–1208.

    Article  PubMed  CAS  Google Scholar 

  116. Peng, Y., Laouar, Y., Li, M. O., Green, E. A., and Flavell, R. A. (2004) TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc. Natl. Acad. Sei USA 101, 4572–4577.

    Article  CAS  Google Scholar 

  117. Fantini, M. C., Becker, C., Monteleone, G., Pallone, F., Galle, P. R., and Neurath, M. F. (2004) Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25-T cells through Foxp3 induction and down-regulation of Smad7. J. Immunol. 172, 5149–5153.

    PubMed  CAS  Google Scholar 

  118. Atkinson, M. A. and Wilson, S.B. (2002) Fatal attraction: chemokines and type 1 diabetes. J. Clin. Invest. 110, 1611–1613.

    PubMed  CAS  Google Scholar 

  119. Grattan, M., Mi, Q. S., Meagher, C., and Delovitch, T. L. (2002) Congenic mapping of the diabetogenic locus Idd4 to a 5.2-cM region of chromosome 11 in NOD mice: identification of two potential candidate subloci. Diabetes 51, 215–223.

    Article  PubMed  CAS  Google Scholar 

  120. Chen, M., Schuit, F., and Eizirik, D. L. (1999) Identification of IL-1beta-induced messenger RNAs in rat pancreatic beta cells by differential display of messenger RNA. Diabetologia 42, 1199–1203.

    Article  PubMed  CAS  Google Scholar 

  121. Frigerio, S., Junt, T., Lu, et al. (2002) Beta cells are responsible for CXCR3-mediated T-cell infiltration in insulitis. Nat. Med. 8, 1414–1420.

    Article  PubMed  CAS  Google Scholar 

  122. Giarratana, N., Penna, G., Amuchastegui, S., Mariani, R., Daniel, K.C., and Adorini, L. (2004) A vitamin D analog down-regulates proinflammatory chemokine production by pancreatic islets inhibiting T cell recruitment and type 1 diabetes development. J. Immunol. 173, 2280–2287.

    PubMed  CAS  Google Scholar 

  123. Rossi, D. and Zlotnik, A. (2000) The biology of chemokines and their receptors. Annu. Rev. Immunol. 18, 217–242.

    Article  PubMed  CAS  Google Scholar 

  124. Denny, P., Lord, J., Hill, N.J., et al. (1997) Mapping of the IDDM locus Idd3 to a 0.35-cM interval containing the interleukin-2 gene. Diabetes 46, 695–700.

    Article  PubMed  CAS  Google Scholar 

  125. Knoechel, B., Lohr, J., Kahn, E., Bluestone, J. A., and Abbas, A.K. (2005) Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endogenous systemic antigen. J. Exp. Med. 202, 1375–1386.

    Article  PubMed  CAS  Google Scholar 

  126. Refaeli, Y., Van Parijs, L., and Abbas, A.K. (1999) Genetic models of abnormal apoptosis in lymphocytes. Immunol. Rev. 169, 273–282.

    Article  PubMed  CAS  Google Scholar 

  127. Colucci, F., Bergman, M.-L., Penha-Goncalves, C., Cilio, M., and Holmberg, D. (1997) Apoptosis resistance of NOD peripheral lymphocytes linked to the idd5 diabetes susceptibility region. Proc. Natl. Acad. Sci. USA 94, 8670–8674.

    Article  PubMed  CAS  Google Scholar 

  128. Gonzalez, A., Katz, J. D., Mattei, M. G., Kikutani, H., Benoist, C., and Mathis, D. (1997) Genetic control of diabetes progression. Immunity 7, 873–883.

    Article  PubMed  CAS  Google Scholar 

  129. Quartey-Papafio, R., Lund, T., Chandler, P., et al. (1995) Aspartate at position 57 of nonobese diabetic I-Ag7 b-chain diminishes the spontaneous incidence of insulin-dependent diabetes mellitus. J. Immunol. 154, 5567–5575.

    PubMed  CAS  Google Scholar 

  130. Singer, S., Tisch, R., Yang, X. D., and McDevitt, H.O. (1993) An Abd transgene prevents diabetes in nonobese diabetic mice by inducing regulatory T cells. Proc. Natl. Acad. Sci. USA 90, 9566–9570.

    Article  PubMed  CAS  Google Scholar 

  131. Slattery, R. M., Kjer-Nielsen, L., Allison, J., Charlton, B., Mandel, T. E., and Miller, J. F. (1990) Prevention of diabetes in non-obese diabetic I-Ak transgenic mice. Nature 345, 724–726.

    Article  PubMed  CAS  Google Scholar 

  132. Lawrance, S. K., Karlsson, L., Price, J., et al. (1989) Transgenic HLA-DRa faithfully reconstitutes I-E-controlled immune functions and induces cross-tolerance to Ea in Ea° mutant mice. Cell 58, 583–594.

    Article  PubMed  CAS  Google Scholar 

  133. Liu, J., Purdy, L. E., Rabinovitch, S., Jevnikar, A.M., and Elliott, J. F. (1999) Major DQ8-restricted T-cell epitopes for human GAD65 mapped using human CD4, DQA1*0301, DQB1*0302 transgenic IA(null) NOD mice. Diabetes 48, 469–477.

    Article  PubMed  CAS  Google Scholar 

  134. Fukui, Y., Nishimura, Y., Iwanga, T., et al. (1989) Glycosuria and insulitis in NOD mice expressing the HLA-DQw6 molecule. J. Immunogenet. 16, 445–453.

    Article  PubMed  CAS  Google Scholar 

  135. Miyazaki, T., Matsuda, Y., Toyonaga, T., Miyazaki, J., Yazaki, Y., and Yamamura, K. (1992) Prevention of autoimmune insulitis in nonobese diabetic mice by expression of major histocompatibility complex class I Ld molecules. Proc. Natl. Acad. Sci. USA 89, 9519–9523.

    Article  PubMed  CAS  Google Scholar 

  136. Allison, J., McClive, P., Oxbrow, L., Baxter, A., Morahan, G., and Miller, J. F. A. P. (1994) Genetic requirements for acceleration of diabetes in non-obese diabetic mice expressing interleukin-2 in islet beta-cells. Eur. J. Immunol. 24, 2535–2541.

    Article  PubMed  CAS  Google Scholar 

  137. DiCosmo, B. R, Picarella, D., and Flavell, R. A. (1994) Local production of human IL-6 promotes insulitis but retards the onset of insulin-dependent diabetes mellitus in non-obese diabetic mice. Int. Immunol. 6, 1829–1837.

    Article  PubMed  CAS  Google Scholar 

  138. Wogensen, L., Lee, M.-S., and Sarvetnick, N. (1994) Production of interleukin 10 by islet cells accelerates immune-mediated destruction of beta cells in nonobese diabetic mice. J. Exp. Med. 179, 1379–1384.

    Article  PubMed  CAS  Google Scholar 

  139. Moritani, M., Yoshimoto, K., Tashiro, F., et al. (1994) Transgenic expression of IL-10 in pancreatic islet A cells accelerates autoimmune insulitis and diabetes in non-obese diabetic mice. Int. Immunol. 6, 1927–1936.

    Article  PubMed  CAS  Google Scholar 

  140. King, C., Davies, J., Mueller, R., et al. (1998) TGF-beta1 alters APC preference, polarizing islet antigen responses toward aTh2 phenotype. Immunity 8, 601–613.

    Article  PubMed  CAS  Google Scholar 

  141. Nakayama, M., Abiru, N., Moriyama, H., et al. (2005) Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 435, 220–223.

    Article  PubMed  CAS  Google Scholar 

  142. Birk, O. S., Douek, D. C., Elias, D., et al. (1996) A role of Hsp60 in autoimmune diabetes: analysis in a transgenic model. Proc. Natl. Acad. sei. USA 93, 1032–1037.

    Article  CAS  Google Scholar 

  143. Geng, L., Solimena, M., Flavell, R. A., Sherwin, R.S., and Hayday, A. C. (1998) Widespread expression of an autoantigen-GAD65 transgene does not tolerize non-obese diabetic mice and can exacerbate disease. Proc. Natl. Acad. Sci. USA 95, 10,055–10,060.

    Article  PubMed  CAS  Google Scholar 

  144. Katz, J. D., Wang, B., Haskins, K., Benoist, C., and Mathis, D. (1993) Following a diabetogenic T cell from genesis through pathogenesis. Cell 74, 1089–1100.

    Article  PubMed  CAS  Google Scholar 

  145. Verdaguer, J., Yoon, J. W., Anderson, B., et al. (1996) Acceleration of spontaneous diabetes in TCR-beta-transgenic nonobese diabetic mice by beta-cell cytotoxic CD8+ T cells expressing identical endogenous TCR-alpha chains. J. Immunol. 157, 4726–4735.

    PubMed  CAS  Google Scholar 

  146. Kim, S. K., Tarbell, K. V., Sanna, M., et al. (2004) Prevention of type I diabetes transfer by glutamic acid decarboxylase 65 peptide 206-220-specific T cells. Proc. Natl. Acad. Sci. USA 101, 14,204–14,209.

    Article  PubMed  CAS  Google Scholar 

  147. Hultgren, B., Huang, X., Dybdal, N., and Stewart, T. A. (1996) Genetic absence of gamma-interferon delays but does not prevent diabetes in NOD mice. Diabetes 45, 812–817.

    Article  PubMed  CAS  Google Scholar 

  148. Kanagawa, O., Xu, G., Tevaarwerk, A., and Vaupel, B. A. (2000) Protection of nonobese diabetic mice from diabetes by gene(s) closely linked to IFN-gamma receptor loci. J. Immunol. 164, 3919–3923.

    PubMed  CAS  Google Scholar 

  149. Kagi, D., Ho, A., Odermatt, B., Zakarian, A., Ohashi, P. S., and Mak T. W. (1999) TNF receptor 1-dependent beta cell toxicity as an effector pathway in autoimmune diabetes. J. Immunol. 162, 4598–4605.

    PubMed  CAS  Google Scholar 

  150. Thebault-Baumont, K., Dubois-Laforgue, D., Krief, P., et al. (2003) Acceleration of type 1 diabetes mellitus in proinsulin 2-deficient NOD mice. J. Clin. Invest. 111, 851–857.

    PubMed  CAS  Google Scholar 

  151. Luhder, F., Chambers, C., Allison, J.P., Benoist, C., and Mathis, D. (2000) Pinpointing when T cell costimulatory receptor CTLA-4 must be engaged to dampen diabetogenic T cells. Proc. Natl. Acad. Sci. USA 97, 12,204–12,209.

    Article  PubMed  CAS  Google Scholar 

  152. Serreze, D. V., Chapman, H. D., Varnum, D.S., et al. (1996) B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new “speed congenic” stock of NOD.Ig mu null mice. J. Exp. Med. 184, 2049–2053.

    Article  PubMed  CAS  Google Scholar 

  153. Kagi, D., Odermatt, B., Ohashi, P.S., Zinkernagel, R.M., and Hengartner, H. (1996) Development of insulitis without diabetes in transgenic mice lacking perforin-dependent cytotoxicity. J. Exp. Med. 183, 2143–2152.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Giarratana, N., Penna, G., Adorini, L. (2007). Animal Models of Spontaneous Autoimmune Disease. In: Fairchild, P.J. (eds) Immunological Tolerance. Methods in Molecular Biology™, vol 380. Humana Press. https://doi.org/10.1007/978-1-59745-395-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-395-0_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-652-8

  • Online ISBN: 978-1-59745-395-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics