Advertisement

Longitudinal Studies and Determination of Risk

  • Sean W. Murphy
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 473)

Abstract

Longitudinal and observational study designs are important methodologies to investigate potential associations that may not be amenable to RCTs. In many cases, they may be performed using existing data and are often cost-effective ways of addressing important questions. The major disadvantage of observational studies is the potential for bias. The absence of randomization means that one can never be certain that unknown confounders are present, and specific studies designs have their own inherent forms of bias. Careful study design may minimize bias. Establishing a casual association based on observational methods requires due consideration of the quality of the individual study and knowledge of its limitations.

Key words

Longitudinal studies cohort study case–control study bias risk factors sample size estimate 

References

  1. 1.
    1. Gillings, D., Koch, G. (1991). The application of the principle of intention-to-treat to the analysis of clinical trials. Drug Information J 25, 411–424.CrossRefGoogle Scholar
  2. 2.
    2. Lopez-Garcia, E., van Dam, R. M., Willett, W. C., Rimm, E. B., Manson, J. E., Stampfer, M. J., Rexrode, K. M., Hu, F. B. (2006). Coffee consumption and coronary heart disease in men and women: a prospective cohort study. Circulation 113, 2045–2053.PubMedCrossRefGoogle Scholar
  3. 3.
    3. Carter, W. B., Elward, K., Malmgren, J., Martin, M. L., Larson, E. (1991). Participation of older adults in health programs and research: A critical review of the literature. Gerontologist 31, 584–592.PubMedCrossRefGoogle Scholar
  4. 4.
    4. Benfante, R., Reed, D., MacLean, C., Kagan, A. (1989). Response bias in the Honolulu Heart Program. Am J Epidemiol 130, 1088–1100.PubMedGoogle Scholar
  5. 5.
    5. Evans, A. M., Love, R. R., Meyerowitz, B. E., Leventhal, H., Nerenz, D. R. (1985). Factors associated with active participation in a Cancer Prevention Clinic. Prev Med 14, 358–371.PubMedCrossRefGoogle Scholar
  6. 6.
    6. Kash, K. M., Holland, J. C., Halper, M. S., Miller, D. G. (1992). Psychological distress and surveillance behaviors of women with a family history of breast cancer. J Natl Cancer Inst 84, 24–30.PubMedCrossRefGoogle Scholar
  7. 7.
    7. Lerman, C., Trock, B., Rimer, B. K., Boyce, A., Jepson, C., Engstrom, P. F. (1991). Psychological and behavioral implications of abnormal mammograms. Ann Intern Med 114, 657–661.PubMedGoogle Scholar
  8. 8.
    8. Parfrey, P. S. (2007). In the literature: On clinical performance measures and outcomes among hemodialysis patients. Am J Kidney Dis 49, 352–355.PubMedCrossRefGoogle Scholar
  9. 9.
    9. Brookmeyer, R., Gail, M. H. (1987). Biases in prevalent cohorts. Biometrics 43, 739–749.PubMedCrossRefGoogle Scholar
  10. 10.
    10. O'Dea, D. F., Murphy, S. W., Hefferton, D., and Parfrey, P. S. (1998). Higher risk for renal failure in first-degree relatives of white patients with end-stage renal disease: A population-based study. Am J Kidney Dis 32, 794–801.PubMedCrossRefGoogle Scholar
  11. 11.
    11. Dawson, B., Trapp, R. G. (2004) Basic and Clinical Biostatistics. McGraw-Hill, Toronto.Google Scholar
  12. 12.
    12. Glantz, S. A. (2005) Primer of Biostatistics. McGraw-Hill, Toronto.Google Scholar
  13. 13.
    13. Schoenfeld, D. A. (1983). Sample-size formula for the proportional-hazards regression model. Biometrics 39, 499–503.PubMedCrossRefGoogle Scholar
  14. 14.
    Dupont, W. D., Plummer, W. D. (2004) PS: Power and sample size calculation. Available at http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/PowerSampleSize, accessed June 25, 2007.
  15. 15.
    Schoenfeld, D. A. 2001 Find statistical considerations for a study where the outcome is time to failure. Available at http://hedwig.mgh.harvard.edu/sample_size/time_to_event/para_time.html, accessed June 25, 2007.
  16. 16.
    16. Mamdani, M., Sykora, K., Li, P., Normand, S. L., Streiner, D. L., Austin, P. C., Rochon, P. A., Anderson, G. M. (2005). Reader's guide to critical appraisal of cohort studies, 2: Assessing potential for confounding. BMJ 330, 960–962.PubMedCrossRefGoogle Scholar
  17. 17.
    17. Mantel, N., Haenszel, W. (1959). Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22, 719–748.PubMedGoogle Scholar
  18. 18.
    18. Grimes, D. A., Schulz, K. F. (2002). Bias and causal associations in observational research. Lancet 359, 248–252.PubMedCrossRefGoogle Scholar
  19. 19.
    19. Kaplan, E. L., Meier, P. (1958). Nonparametric estimation from incomplete obervations. J Am Stat Assoc 53, 457–481.CrossRefGoogle Scholar
  20. 20.
    20. Cox, D. (1972). Regression models and life tables (with discussion). J Roy Stat Soc B 4, 187–220.Google Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Health Sciences CentreNewfoundlandCanada

Personalised recommendations