Skip to main content

Transgenic Wheat, Barley and Oats: Future Prospects

  • Protocol
  • First Online:
Transgenic Wheat, Barley and Oats

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 478))

Abstract

Following the success of transgenic maize and rice, methods have now been developed for the efficient introduction of genes into wheat, barley and oats. This review summarizes the present position in relation to these three species, and also uses information from field trial databases and the patent literature to assess the future trends in the exploitation of transgenic material. This analysis includes agronomic traits and also discusses opportunities in expanding areas such as biofuels and biopharming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DunwellJ. M. (2002) Future prospects for transgenic crops. Phytochem. Rev. 1,1–12.

    Article  CAS  Google Scholar 

  2. DunwellJ. M. (2005) Transgenic Crops: Current and Future Generations. Methods in Molecular Biology, Vol. 286, in Peña, L, Transgenic Plants: Methods and Protocols (Humana,Totowa, pp. 377–397.

    Google Scholar 

  3. DunwellJ. M. (2005) Review: intellectual property aspects of plant transformation. Plant Biotechnol. J. 3,371–384.

    Article  CAS  Google Scholar 

  4. DunwellJ. M. (2006) Patents and transgenic plants. Acta Hortic. 725,719–732.

    Google Scholar 

  5. VasilI. K. and Vasil, V. (2006) Transformation of wheat via particle bombardment. Methods Mol. Biol. 318,273–283.

    CAS  Google Scholar 

  6. WanY. and Layton, J. (2006) Wheat (Triticum aestivum L.) Methods Mol. Biol. 343,245–53.

    Google Scholar 

  7. JacobsenJ., Venables, I., Wang, M. B., Matthews, P., Ayliffe, M. and Gubler, F. (2006) Barley (Hordeum vulgare L.) Methods Mol. Biol. 343,171–183.

    Google Scholar 

  8. PerretS. J., Valentine, J., Leggett, J. M. and Morris, P. (2003) Integration, expression and inheritance of transgenes in hexaploid oat (Avena sativa L.) Plant Physiol. 160,931–943.

    Article  CAS  Google Scholar 

  9. ShrawatA. K. and Lörz, H. (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers Plant Biotechnol. J. 4,575–603.

    Article  CAS  Google Scholar 

  10. PatnaikD., Vishnudasan, D. and Khurana, P. (2006) Agrobacterium-mediated transformation of mature embryos of Triticum aestivum and Triticum durum Curr. Sci. 91,307–317.

    CAS  Google Scholar 

  11. SupartanaP., Shimizu, T., Nogawa, M., Shioiri, H., Nakajima, T., Haramoto, N., Nozue, M. and Kojima, M. (2006) Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens J. Biosci. Bioeng. 102,162–170.

    Article  CAS  Google Scholar 

  12. HolmeI. B., Brinch-Pedersen, H., Lange, M. and Holm, P. B. (2006) Transformation of barley (Hordeum vulgare L.) by Agrobacterium tumefaciens infection of in vitro cultured ovules Plant Cell Rep. 25,1325–1335.

    Article  CAS  Google Scholar 

  13. KumlehnJ., Serazetdinova, L., Hensel, G., Becker, D. and Lörz, H. (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens Plant Biotechnol. J. 4,251–261.

    Article  CAS  Google Scholar 

  14. LangeM., Vincze, E., Moller, M. G. and Holm, P. B. (2006) Molecular analysis of transgene and vector backbone integration into the barley genome following Agrobacterium-mediated transformation Plant Cell Rep. 25,815–820.

    Article  CAS  Google Scholar 

  15. WuH. X., Sparks, C. A. and Jones, H. D. (2006) Characterisation of T-DNA loci and vector backbone sequences in transgenic wheat produced by Agrobacterium-mediated transformation Mol. Breed. 18,195–208.

    Article  Google Scholar 

  16. YaoQ., Cong, L., Chang, J. L., Li, K. X., Yang, G. X. and He, G. Y. (2006) Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. J. Exp. Bot. 57,3737–3746.

    Article  CAS  Google Scholar 

  17. YaoQ., Cong, L., He, G., Chang, J., Li, K. and Yang, G. (2007) Optimization of wheat co-transformation procedure with gene cassettes resulted in an improvement in transformation frequency. Mol. Biol. Rep. 34,61–67.

    Article  CAS  Google Scholar 

  18. BadrY. A., Kereim, M. A., Yehia, M. A., Fouad, O. O. and Bahieldin, A. (2005) Production of fertile transgenic wheat plants by laser micropuncture. Photochem. Photobiol. Sci. 4,803–807.

    Article  CAS  Google Scholar 

  19. LiangH., Wu, F. S., Wang, D. W., Sun, D. F. and Jia, X. (2005) Wheat transformation by electroporation with ring electrode. Yi Chuan Xue Bao 32,66–71.

    CAS  Google Scholar 

  20. HowattK. A., Endres, G. J., Hendrickson, P. E., Aberle, E. Z., Lukach, J. R., Jenks, B. M., Riveland, N. R., Valenti, S. A. and Rystedt, C. M. (2006) Evaluation of glyphosate-resistant hard red spring wheat (Triticum aestivum) Weed Technol. 20,706–716.

    Article  CAS  Google Scholar 

  21. BiR. M., Jia, H. Y., Feng, D. S. and Wang, H. G. (2006) Production and analysis of transgenic wheat (Triticum aestivum L.) with improved insect resistance by the introduction of cowpea trypsin inhibitor gene Euphytica 151,351–360.

    Article  CAS  Google Scholar 

  22. VishnudasanD., Tripathi, M. N., Rao, U. and Khurana, P. (2005) Assessment of nematode resistance in wheat transgenic plants expressing potato proteinase inhibitor (PIN2) gene Transgen. Res. 14,665–675.

    Article  CAS  Google Scholar 

  23. Tobias, D. J., Manoharan, M., Pritsch, C. and Dahleen, L. S. (2007) Co-bombardment, integration and expression of rice chitinase and thaumatin-like protein genes in barley (Hordeum vulgare cv. Conlon) Plant Cell Rep. 26,631–639.

    Article  CAS  Google Scholar 

  24. SchlaichT., Urbaniak, B. M., Malgras, N., Ehler, E., Birrer, C., Meier, L. and Sautter, C. (2006) Increased field resistance to Tilletia caries provided by a specific antifungal virus gene in genetically engineered wheat Plant Biotechnol. J. 4,63–75.

    Article  CAS  Google Scholar 

  25. SubhankarR. B., Sautter, C. and Chattoo, B. B. (2006) Expression of the lipid transfer protein Ace-AMP1 in transgenic wheat enhances antifungal activity and defense responses. Transgen. Res. 15,435–446.

    Article  Google Scholar 

  26. ZhaoT. J., Zhao, S. Y., Chen, H. M., Zhao, Q. Z., Hu, Z. M., Hou, B. K. and Xia, G. M. (2006) Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedling Plant Cell Rep. 25,1199–1204.

    Article  Google Scholar 

  27. BalconiC., Lanzanova, C., Conti, E., Triulzi, T., Forlani, F., Cattaneo, M. and Lupotto, E. (2007) Fusarium head blight evaluation in wheat transgenic plants expressing the maize b-32 antifungal gene. Eur. J. Plant Pathol. 117,129–140.

    Article  CAS  Google Scholar 

  28. MackintoshC. A., Garvin, D. F., Radmer, L. E., Heinen, S. J. and Muehlbauer, G. J. (2006) A model wheat cultivar for transformation to improve resistance to Fusarium head blight. Plant Cell Rep. 25,313–319.

    Article  CAS  Google Scholar 

  29. MakandarR., Essig, J. S., Schapaugh, M. A., Trick, H. N. and Shah, J. (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol. Plant Microbe Interact. 19,123–129.

    Article  CAS  Google Scholar 

  30. ManoharanM., Dahleen, L. S., Hohn, T. M., Neate, S. M., Yu, X. H., Alexander, N. J., McCormick, S. P., Bregitzer, P., Schwarz, P. B. and Horsley, R. D. (2006) Expression of 3-OH trichothecene acetyltransferase in barley (Hordeum vulgare L.) and effects on deoxynivalenol Plant Sci. 171,699–706.

    Article  CAS  Google Scholar 

  31. LuoL., Zhang, J., Yang, G., Li, Y., Li, K. and He, G. (2007) Expression of puroindoline a enhances leaf rust resistance in transgenic tetraploid wheat. Mol. Biol. Rep. 35,195–200.

    Article  Google Scholar 

  32. CarlsonA., Skadsen, R. and Kaeppler, H. F. (2006) Barley hordothionin accumulates in transgenic oat seeds and purified protein retains anti-fungal properties in vitro In Vitro Cell. Dev. Biol.-Plant 42,318–323.

    Article  CAS  Google Scholar 

  33. YanF., Zhang, W. W., Xiao, H., Li, S. F. and Cheng, Z. M. (2007) Transgenic wheat expressing virus-derived hairpin RNA is resistant to barley yellow dwarf virus. Yi Chuan 29,97–102.

    CAS  Google Scholar 

  34. YanF., Zheng, Y. Y., Zhang, W. W., Xiao, H., Li, S. F. and Cheng, Z. M. (2006) Obtained transgenic wheat expressing pac1 mediated by Agrobacterium is resistant against barley yellow dwarf virus-GPV Chinese Sci. Bull. 51,2362–2368.

    Article  CAS  Google Scholar 

  35. AbebeT., Guenzi, A. C., Martin, B. and Cushman, J. C. (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol. 131,1748–1755.

    Article  CAS  Google Scholar 

  36. OrabyH. F., Ransom, C. B., Kravchenko, A. N. and Sticklen, M. B. (2005) Barley HVA1 gene confers salt tolerance in R3 transgenic oat. Crop Sci. 45,2218–2227.

    Article  CAS  Google Scholar 

  37. KhannaH. K. and Daggard, G. E. (2006) Targeted expression of redesigned and codon optimised synthetic gene leads to recrystallisation inhibition and reduced electrolyte leakage in spring wheat at sub-zero temperatures. Plant Cell Rep. 25,1336–1346.

    Article  CAS  Google Scholar 

  38. SchultheissH., Hensel, G., Imani, J., Broeders, S., Sonnewald, U., Kogel, K. H., Kumlehn, J. and Huckelhoven, R. (2005) Ectopic expression of constitutively activated RACB in barley enhances susceptibility to powdery mildew and abiotic stress. Plant Physiol. 139,353–362.

    Article  CAS  Google Scholar 

  39. SharmaV. K., Monostori, T., Gobel, C., Hansch, R., Bittner, F., Wasternack, C., Feussner, I., Mendel, R. R., Hause, B. and Schulze, J. (2006) Transgenic barley plants overexpressing a 13-lipoxygenase to modify oxylipin signature. Phytochemistry 67,264–276.

    Article  CAS  Google Scholar 

  40. BregitzerP., Blechl, A. E., Fiedler, D., Lin, J., Sebesta, P., De Soto, J. F., Chicaiza, O. and Dubcovsky, J. (2006) Changes in high molecular weight glutenin subunit composition can be genetically engineered without affecting wheat agronomic performance. Crop Sci. 46,1553–1563.

    Article  CAS  Google Scholar 

  41. BlechlA., Lin, J., Nguyen, S., Chan, R., Anderson, O. D. and Dupont, F. M. (2007) Transgenic wheats with elevated levels of Dx5 and/or Dy10 high-molecular-weight glutenin subunits yield doughs with increased mixing strength and tolerance. J. Cereal Sci. 45,172–183.

    Article  CAS  Google Scholar 

  42. WegelE., Vallejos, R. H., Christou, P., Stoger, E. and Shaw, P. (2005) Large-scale chromatin decondensation induced in a developmentally activated transgene locus. J. Cell Sci. 118,1021–1031.

    Article  CAS  Google Scholar 

  43. GuoH. X., Yin, J., Ren, J. P., Wang, Z. Y. and Chen, H. L. (2007) Changes in proteins within germinating seeds of transgenic wheat with an antisense construct directed against the thioredoxin. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 33,18–24.

    CAS  Google Scholar 

  44. MartinJ. M., Meyer, F. D., Smidansky, E. D., Wanjugi, H., Blechl, A. E. and Giroux, M. J. (2006) Complementation of the pina (null) allele with the wild type Pina sequence restores a soft phenotype in transgenic wheat Theor. Appl. Genet. 113,1563–1570.

    Article  CAS  Google Scholar 

  45. LiJ. R., Zhao, W., Li, Q. Z., Ye, X. G., An, B. Y., Li, X. and Zhang, X. S. (2005) RNA silencing of Waxy gene results in low levels of amylose in the seeds of transgenic wheat (Triticum aestivum L.) Yi Chuan Xue Bao 32,846–854.

    CAS  Google Scholar 

  46. MeyerF. D., Talbert, L. E., Martin, J. M., Lanning, S. P., Greene, T. W. and Giroux, M. J. (2007) Field evaluation of transgenic wheat expressing a modified ADP-glucose pyrophosphorylase large subunit. Crop Sci. 47,336–342.

    Article  CAS  Google Scholar 

  47. Brinch-PedersenH., Hatzack, F., Stoger, E., Arcalis, E., Pontopidan, K. and Holm, P. B. (2006) Heat-stable phytases in transgenic wheat (Triticum aestivum L.): deposition pattern, thermostability, and phytate hydrolysis J. Agric. Food Chem. 54,4624–4632.

    Article  CAS  Google Scholar 

  48. MurrayF., Matthews, P., Jacobsen, J. and Gubler, F. (2006) Increased expression of HvGAMYB in transgenic barley increases hydrolytic enzyme production by aleurone cells in response to gibberellin. J. Cereal Sci. 44,317–322.

    Article  CAS  Google Scholar 

  49. VickersC. E., Xue, G. and Gresshoff, P. M. (2006) A novel cis-acting element, ESP, contributes to high-level endosperm-specific expression in an oat globulin promoter. Plant Mol. Biol. 62,195–214.

    Article  CAS  Google Scholar 

  50. YinboQ., Zhu, M., Liu, K., Bao, X. and Lin, J. (2006) Studies on cellulosic ethanol production for sustainable supply of liquid fuel in China. Biotechnol. J. 1,1235–1240.

    Article  Google Scholar 

  51. Elbehri, A. (2007) The Changing Face of the U.S. Grain System: Differentiation and Identity Preservation Trends. USDA Economic Research Service. Economic Research Report No. 35.

    Google Scholar 

  52. PimentelD. and Patzek, T. (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Earth Env. Sci. 14,65–76.

    CAS  Google Scholar 

  53. PimentelD., Patzek, T. and Cecil, G. (2007) Ethanol production: energy, economic, and environmental losses. Rev. Environ. Contam. Toxicol. 189,25–41.

    Article  CAS  Google Scholar 

  54. ElbehriA. (2005). Biopharming and the food system: examining the potential benefits and risks. AgBioForum 8,18–25.

    Google Scholar 

  55. SchunmannP. H. D., Coia, G. and Waterhouse, P. M. (2002) Biopharming the SimpliRED (TM) HIV diagnostic reagent in barley, potato and tobacco. Mol. Breed. 9,113–121.

    Article  Google Scholar 

  56. JoensuuJ. J., Kotiaho, M., Teeri, T. H., Valmu, L., Nuutila, A. M., Oksman-Caldentey, K. M. and Niklander-Teeri, V. (2006) Glycosylated F4 (K88) fimbrial adhesin FaeG expressed in barley endosperm induces ETEC-neutralizing antibodies in mice. Transgen. Res. 15,359–373.

    Article  CAS  Google Scholar 

  57. BreretonH. M., Chamberlain, D., Yang, R., Tea, M., McNeil, S., Coster, D. J., and Williams, K. A. (2007) Single chain antibody fragments for ocular use produced at high levels in a commercial wheat variety. J. Biotechnol. 129,539–546.

    Article  CAS  Google Scholar 

  58. BhallaP. L. (2006) Genetic engineering of wheat – current challenges and opportunities. Trends Biotechnol. 24,305–311.

    Article  CAS  Google Scholar 

  59. ShrawatA. K., Becker, D. and Lörz, H. (2007) Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L.) Plant Sci. 172,281–290.

    Article  CAS  Google Scholar 

  60. AbebeT., Skadsen, R., Patel, M. and Kaeppler, H. (2006) The Lem2 gene promoter of barley directs cell- and development-specific expression of gfp in transgenic plants Plant Biotechnol. J. 4,35–44.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim M. Dunwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dunwell, J. (2009). Transgenic Wheat, Barley and Oats: Future Prospects. In: Jones, H., Shewry, P. (eds) Transgenic Wheat, Barley and Oats. Methods in Molecular Biology™, vol 478. Humana Press. https://doi.org/10.1007/978-1-59745-379-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-379-0_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-961-1

  • Online ISBN: 978-1-59745-379-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics