Skip to main content

Selection of Transformed Plants

  • Protocol
  • First Online:
Transgenic Wheat, Barley and Oats

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 478))

Abstract

The low frequency and randomness of transgene integration into host cells, combined with the significant challenges of recovering whole plants from those rare events, makes the use of selectable marker genes routine in plant transformation experiments. For research applications that are unlikely to be grown in the field, strong herbicide- or antibiotic resistance is commonly used. Here we use genes conferring resistance to glufosinate herbicides as an example of a selectable marker in wheat transformation by either Agrobacterium or biolistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fang, Y. D., Akula, C. Altpeter, F. (2002) Agrobacterium-mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA: barley genomic DNA junctions J. Plant Physiol. 159,1131–1138.

    Article  CAS  Google Scholar 

  2. Murray, F., Brettell, R., Matthews, P., Bishop, D. Jacobsen, J. (2004) Comparison of Agrobacterium-mediated transformation of four barley cultivars using the GFP and GUS reporter genes Plant Cell Rep. 22,397–402

    Article  CAS  Google Scholar 

  3. Jordan, M. C. (2000) Green fluorescent protein as a visual marker for wheat transformation. Plant Cell Rep. 19,1069–1075.

    Article  CAS  Google Scholar 

  4. McCormac, A. C., Wu, H. X., Bao, M. Z., Wang, Y. B., Xu, R. J., Elliott, M. C. Chen, D. F. (1998) The use of visual marker genes as cell-specific reporters of Agrobacterium-mediated T-DNA delivery to wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) Euphytica 99,17–25.

    Article  CAS  Google Scholar 

  5. Kaeppler, H. F., Menon, G. K., Skadsen, R. W., Nuutila, A. M. Carlson, A. R. (2000) Transgenic oat plants via visual selection of cells expressing green fluorescent protein. Plant Cell Rep. 19,661–666.

    Article  CAS  Google Scholar 

  6. Ahlandsberg, S., Sathish, P., Sun, C. X. Jansson, C. (1999) Green fluorescent protein as a reporter system in the transformation of barley cultivars. Physiol. Plantarum 107,194–200.

    Article  CAS  Google Scholar 

  7. Harwood, W. A., Ross, S. M., Bulley, S. M., Travella, S., Busch, B., Harden, J. Snape, J. W. (2002) Use of the firefly luciferase gene in a barley (Hordeum vulgare) transformation system Plant Cell Rep. 21,320–326.

    Article  CAS  Google Scholar 

  8. Huber, M., Hahn, R. Hess, D. (2002) High transformation frequencies obtained from a commercial wheat (Triticum aestivum L. cv. ‘Combi’) by microbombardment of immature embryos followed by GFP screening combined with PPT selection Mol. Breed. 10,19–30.

    Article  CAS  Google Scholar 

  9. Permingeat, H. R., Alvarez, M. L., Cervigni, G. D. L., Ravizzini, R. A. Vallejos, R. H. (2003) Stable wheat transformation obtained without selectable markers. Plant. Mol. Biol. 52,415–419.

    Article  CAS  Google Scholar 

  10. SparksC. A. Jones, H. D. (2004) Transformation of wheat by biolistics, Curtis, I. P., in Transgenic Crops of the World – Essential Protocols,KluwerDordrecht, pp. 19–35.

    Google Scholar 

  11. Barcelo, P., Rasco-Gaunt, S., Thorpe, C. Lazzeri, P. A. (2001) Transformation and gene expression, Shewry, P. R., Lazzeri, P. A. Edwards, K. J., in Advances in Botanical Research Incorporating Advances in Plant Pathology 34, Academic, London, pp. 59–126.

    Google Scholar 

  12. Goodwin, J., Pastori, G., Davey, M. Jones, H. D. (2004) Selectable markers: antibiotic and herbicide resistance, Pena, L ed.), in Transgenic Plants: Methods and Protocols, (Humana, Totowa, NJ.

    Google Scholar 

  13. Pastori, G. M., Wilkinson, M. D., Steele, S. H., Sparks, C. A., Jones, H. D. Parry, M. A. J. (2001) Age-dependent transformation frequency in elite wheat varieties. J. Exp. Bot. 52,857–863.

    CAS  Google Scholar 

  14. Rasco-Gaunt, S., Riley, A., Cannell, M., Barcelo, P. Lazzeri, P. A. (2001) Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment J. Exp. Bot. 52,865–874.

    CAS  Google Scholar 

  15. Rasco-Gaunt, S., Riley, A., Lazzeri, P. Barcelo, P. (1999) A facile method for screening for phosphinothricin (PPT)-resistant transgenic wheats. Mol. Breed. 5,255–262.

    Article  Google Scholar 

  16. Jones, H. D., Doherty, A. Wu, H. (2005) Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat Plant Methods 1, 5.

    Article  Google Scholar 

  17. Wu, H., Sparks, C., Amoah, B. Jones, H. D. (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat Plant Cell Rep. 21,659–668.

    CAS  Google Scholar 

  18. Iser, M., Fettig, S., Scheyhing, F., Viertel, K. Hess, D. (1999) Genotype-dependent stable genetic transformation in German spring wheat varieties selected for high regeneration potential. J. Plant. Physiol. 154,509–516.

    CAS  Google Scholar 

  19. Weeks, J. T., Anderson, O. D. Blechl, A. E. (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum) Plant. Physiol. 102,1077–1084.

    CAS  Google Scholar 

  20. Vasil, V., Castillo, A. M., Fromm, M. E. Vasil, I. K. (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio-Technology 10,667–674.

    CAS  Google Scholar 

  21. Nehra, N. S., Chibbar, R. N., Leung, N., Caswell, K., Mallard, C., Steinhauer, L., Baga, M. Kartha, K. K. (1994) Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J. 5,285–297.

    Article  CAS  Google Scholar 

  22. Becker, D., Brettschneider, R. Lorz, H. (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J. 5,299–307.

    Article  CAS  Google Scholar 

  23. Ortiz, J. P. A., Reggiardo, M. I., Ravizzini, R. A., Altabe, S. G., Cervigni, G. D. L., Spitteler, M. A., Morata, M. M., Elias, F. E. Vallejos, R. H. (1996) Hygromycin resistance as an efficient selectable marker for wheat stable transformation. Plant Cell Rep. 15,877–881.

    Article  CAS  Google Scholar 

  24. Zhou, H., Arrowsmith, J. W., Fromm, M. E., Hironaka, C. M., Taylor, M. L., Rodriguez, D., Pajeau, M. E., Brown, S. M., Santino, C. G. Fry, J. E. (1995) Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep. 15,159–163.

    CAS  Google Scholar 

  25. Weeks, J. T., Koshiyama, K. Y., Maier-Greiner, U., Schaeffner, T. Anderson, O. D. (2000) Wheat transformation using cyanamide as a new selective agent. Crop Sci. 40,1749–1754.

    Article  CAS  Google Scholar 

  26. Pastori, G. M., Huttly, A., West, J., Sparks, C., Pieters, A., Luna, C. M., Jones, H. D. Foyer, C. H. (2007) The maize Activator/Dissociation system is functional in hexaploid wheat through successive generations. Funct. Plant. Biol. 34,835–843.

    Article  CAS  Google Scholar 

  27. Gadaleta, A., Giancaspro, A., Blechl, A. Blanco, A. (2006) Phosphomannose isomerase, pmi, as a selectable marker gene for durum wheat transformation. J. Cereal Sci. 43,31–37.

    Article  CAS  Google Scholar 

  28. Cheng, M., Fry, J. E., Pang, S. Z., Zhou, H. P., Hironaka, C. M., Duncan, D. R., Conner, T. W. Wan, Y. C. (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens Plant Physiol. 115,971–980.

    CAS  Google Scholar 

  29. Hu, T., Metz, S., Chay, C., Zhou, H. P., Biest, N., Chen, G., Cheng, M., Feng, X., Radionenko, M., Lu, F. Fry, J. (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection Plant Cell Rep. 21,1010–1019.

    Article  CAS  Google Scholar 

  30. Cheng, M., Hu, T. C., Layton, J., Liu, C. N. Fry, J. E. (2003) Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat In Vitro Cell Develop. Biol. – Plant 39,595–604.

    Article  CAS  Google Scholar 

  31. Mitic, N., Nikolic, R., Ninkovic, S., Miljus-Djukic, J. Neskovic, M. (2004) Agrobacterium-mediated transformation and plant regeneration of Triticum aestivum L Biol. Plant. 48,179–184.

    Article  CAS  Google Scholar 

  32. Wu, H., Doherty, A. and Jones, H. D. (2008) Efficient and rapid Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. ssp durum) using additional virulence genes. Transgen. Res. 17, 425–436.

    Article  CAS  Google Scholar 

  33. Khanna, H. K. Daggard, G. E. (2003) Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium Plant Cell Rep. 21,429–436.

    CAS  Google Scholar 

  34. Reed, J., Privalle, L., Powell, M. L., Meghji, M., Dawson, J., Dunder, E., Suttie, J., Wenck, A., Launis, K., Kramer, C., Chang, Y. F., Hansen, G. Wright, M. (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell. Develop. Biol. – Plant 37,127–132.

    Article  CAS  Google Scholar 

  35. Wright, M., Dawson, J., Dunder, E., Suttie, J., Reed, J., Kramer, C., Chang, Y., Novitzky, R., Wang, H. Artim-Moore, L. (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker Plant Cell Rep. 20,429–436.

    Article  CAS  Google Scholar 

  36. Funatsuki, H., Kuroda, H., Kihara, M., Lazzeri, P. A., Muller, E., Lorz, H. Kishinami, I. (1995) Fertile transgenic barley generated by direct DNA transfer to protoplasts. Theor. Appl. Genet. 91,707–712.

    Article  CAS  Google Scholar 

  37. Nobre, J., Davey, M. R., Lazzeri, P. A. Cannell, M. E. (2000) Transformation of barley scutellum protoplasts: regeneration of fertile transgenic plants. Plant Cell Rep. 19,1000–1005.

    Article  CAS  Google Scholar 

  38. Brinch-Pedersen, H., Olsen, O., Knudsen, S. Holm, P. B. (1999) An evaluation of feed-back insensitive aspartate kinase as a selectable marker for barley (Hordeum vulgare L.) transformation Hereditas 131,239–245.

    Article  CAS  Google Scholar 

  39. Wan, Y. C. Lemaux, P. G. (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104,37–48.

    CAS  Google Scholar 

  40. Harwood, W. A., Ross, S. M., Cilento, P. Snape, J. W. (2000) The effect of DNA/gold particle preparation technique and particle bombardment device on the transformation of barley (Hordeum vulgare) Euphytica 111,67–76.

    Article  CAS  Google Scholar 

  41. Brinch-Pedersen, H., Galili, G., Knudsen, S. Holm, P. B. (1996) Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feed-back-insensitive aspartate kinase and dihydrodipicolinate synthase Plant Mol. Biol. 32,611–620.

    Article  CAS  Google Scholar 

  42. Stiff, C. M., Kilian, A., Zhou, H. P., Kudrna, D. A. Kleinhofs, A. (1995) Stable transformation of barley callus using biolistic ® particle bombardment and the phosphinothricin acetyltransferase (Bar) gene Plant Cell Tissue and Organ Cult. 40,243–248.

    Article  CAS  Google Scholar 

  43. Jahne, A., Becker, D., Brettschneider, R. Lorz, H. (1994) Regeneration of transgenic, microspore-derived, fertile barley. Theor. Appl. Genet. 89,525–533.

    Article  Google Scholar 

  44. Gurel, F., Gozukirmizi, N. (2000) Optimization of gene transfer into barley (Hordeum vulgare L.) mature embryos by tissue electroporation Plant Cell Rep. 19,787–791.

    Article  CAS  Google Scholar 

  45. Ritala, A., Aspegren, K., Kurten, U., Salmenkalliomarttila, M., Mannonen, L., Hannus, R., Kauppinen, V., Teeri, T. H. Enari, T. M. (1994) Fertile transgenic barley by particle bombardment of immature embryos. Plant Mol. Biol. 24,317–325.

    Article  CAS  Google Scholar 

  46. Koprek, T., McElroy, D., Louwerse, J., Williams-Carrier, R. Lemaux, P. G. (1999) Negative selection systems for transgenic barley (Hordeum vulgare L.): comparison of bacterial codA- and cytochrome P450 gene-mediated selection Plant J. 19,719–726.

    Article  CAS  Google Scholar 

  47. Hagio, T., Hirabayashi, T., Machii, H. Tomotsune, H. (1995) Production of fertile transgenic barley (Hordeum vulgare L.) plant using the hygromycin-resistance marker Plant Cell Rep. 14,329–334.

    Article  CAS  Google Scholar 

  48. Tingay, S., McElroy, D., Kalla, R., Fieg, S., Wang, M. B., Thornton, S. Brettell, R. (1997) Agrobacterium tumefaciens-mediated barley transformation Plant J. 11,1369–1376.

    Article  CAS  Google Scholar 

  49. Travella, S., Ross, S. M., Harden, J., Everett, C., Snape, J. W. Harwood, W. A. (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques Plant Cell Rep. 23,780–789.

    Article  CAS  Google Scholar 

  50. Shrawat, A. K., Becker, D. Lorz, H. (2007) Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L.) Plant Sci. 172,281–290.

    Article  CAS  Google Scholar 

  51. Kumlehn, J., Serazetdinova, L., Hensel, G., Becker, D. Loerz, H. (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens Plant Biotech. J. 4,251–261.

    Article  CAS  Google Scholar 

  52. Wang, M. B., Abbott, D. C., Upadhyaya, N. M., Jacobsen, J. V. Waterhouse, P. M. (2001) Agrobacterium tumefaciens-mediated transformation of an elite Australian barley cultivar with virus resistance and reporter genes Aust. J. Plant Physiol. 28,149–156.

    Google Scholar 

  53. Torbert, K. A., Rines, H. W. Somers, D. A. (1995) Use of paromomycin as a selective agent for oat transformation. Plant Cell Rep. 14,635–640.

    Article  CAS  Google Scholar 

  54. Torbert, K. A., Rines, H. W. Somers, D. A. (1998) Transformation of oat using mature embryo-derived tissue cultures. Crop Sci. 38,226–231.

    Article  Google Scholar 

  55. Somers, D. A., Rines, H. W., Gu, W., Kaeppler, H. F. Bushnell, W. R. (1992) Fertile transgenic oat plants. Bio-Technology 10,1589–1594.

    CAS  Google Scholar 

  56. Maqbool, S. B., Zhong, H., El-Maghraby, Y., Ahmad, A., Chai, B., Wang, W., Sabzikar, R. Sticklen, M. B. (2002) Competence of oat (Avena sativa L.) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing hva1 Theor. Appl. Genet. 105,201–208.

    Article  CAS  Google Scholar 

  57. Zhang, S., Cho, M. J., Koprek, T., Yun, R., Bregitzer, P. Lemaux, P. G. (1999) Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings Plant Cell Rep. 18,959–966.

    Article  CAS  Google Scholar 

  58. Cho, M.-J., Jiang, W. Lemaux, P. G. (1999) High-frequency transformation of oat via microprojectile bombardment of seed-derived highly regenerative cultures. Plant Sci. 148,9–17.

    Article  CAS  Google Scholar 

  59. Christensen, A. H. Quail, P. H. (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgen. Res. 5,213–218.

    Article  CAS  Google Scholar 

  60. Fromm, M. E., Morrish, F., Armstrong, C., Williams, R., Thomas, J. Klein, T. M. (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio-Technology 8,833–839.

    CAS  Google Scholar 

  61. Xiang, C. B., Han, P., Lutziger, I., Wang, K. Oliver, D. J. (1999) A mini binary vector series for plant transformation. Plant Mol. Biol. 40,711–717.

    Article  CAS  Google Scholar 

  62. Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. Mullineaux, P. M. (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation Plant Mol. Biol. 42,819–832.

    Article  CAS  Google Scholar 

  63. Stacey, J. Isaac, P. (1994) Isolation of DNA from plants, Isaac, P., in Methods in Molecular Biology – Protocols for Nucleic Acid Analysis by Nonradioactive Probes 28, Humana, Totowa, pp. 9–15.

    Chapter  Google Scholar 

  64. Rasco-Gaunt, S., Riley, A., Barcelo, P. Lazzeri, P. A. (1999) Analysis of particle bombardment parameters to optimize DNA delivery into wheat tissues. Plant Cell Rep. 19,118–127.

    Article  CAS  Google Scholar 

  65. Barro, F., Cannell, M. E., Lazzeri, P. A. Barcelo, P. (1998) The influence of auxins on transformation of wheat and tritordeum and analysis of transgene integration patterns in transformants. Theor. Appl. Genet. 97,684–695.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jones*, H., Sparks, C. (2009). Selection of Transformed Plants. In: Jones, H., Shewry, P. (eds) Transgenic Wheat, Barley and Oats. Methods in Molecular Biology™, vol 478. Humana Press. https://doi.org/10.1007/978-1-59745-379-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-379-0_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-961-1

  • Online ISBN: 978-1-59745-379-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics