Skip to main content

Capillary Electrochromatography and On-Line Concentration

  • Protocol
Capillary Electrophoresis

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 384))

Summary

Capillary electrochromatography (CEC) is a micro-separation technique that combines the advantages of capillary zone electrophoresis with those of high-performance liquid chromatography. Accordingly, it has attracted extensive attention over the last decade. Among the stationary phases for CEC, monolithic stationary phase has been regarded as the most suitable stationary phase for CEC because of its simple preparation, the elimination of frits, and its excellent performance. In this chapter, procedures for preparing CEC monolithic columns with an improved configuration, in which there are stationary phases at both sides of detection window and no stationary phase at detection window, are presented. The separation of acidic and basic compounds on such monolithic columns is used as an example to demonstrate CEC separation protocol. Additionally, an on-line concentration technique in CEC is presented. As a result of the coexistence of stationary phase and electric field in a CEC column, it is possible to employ chromatographic zone sharpening and field-amplified sample stacking effects simultaneously to improve CEC detection sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pretorius, V., Hopkins, B. J., and Schieke, J. D. (1974) Electro-osmosis: a new concept for high-speed liquid chromatography. J. Chromatogr. 99, 23–30.

    Article  CAS  Google Scholar 

  2. Jorgenson, J. W. and Lukacs, K. D. (1981) High-resolution separations based on electrophoresis and electroosmosis. J. Chromatogr. 218, 209–216.

    Article  CAS  Google Scholar 

  3. Knox, J. H., and Grant. I. H. (1987) Miniaturisation in pressure and electroendosmotically driven liquid chromatography with electroosmotic flow. Chromatographia 24, 135–143.

    Article  CAS  Google Scholar 

  4. Knox, J. H. (1988) Thermal effects and band spreading in capillary electro-separation. Chromatographia 26, 329–337.

    Article  CAS  Google Scholar 

  5. Knox, J. H. (1980) Terminology and nomenclature in capillary electroseparation systems. J. Chromatogr. A. 680, 3–13.

    Article  Google Scholar 

  6. Breadmore, M. C., Macka, M., Avdalovic, N., and Haddad, P. R. (2001) On-capillary ion-exchange preconcentration of inorganic anions in open-tubular capillary electrochromatography with elution using transient-isotachophoretic gradients. 2. Characterization of the isotachophoretic gradient. Anal. Chem. 73, 820–828.

    Article  CAS  PubMed  Google Scholar 

  7. Matyska, M. T., Pesek, J. J., Boysen, R. I., and Hearn, M. T. W. (2001) Characterization of open tubular capillary electrochromatography columns for the analysis of synthetic peptides using isocratic conditions. Anal. Chem. 73, 5116–5125.

    Article  CAS  PubMed  Google Scholar 

  8. Kapnissi, C. P., Valle, B. C., and Warner, I. M. (2003) Chiral separations using polymeric surfactants and polyelectrolyte multilayers in open-tubular capillary electrochromatography. Anal. Chem. 75, 6097–6104.

    Article  CAS  PubMed  Google Scholar 

  9. Breadmore, M. C., Macka M., Avdalovic, N., and Haddad, P. R. (2000) Open-tubular ion-exchange capillary electrochromatography of inorganic anions. Analyst 125, 1235–1241.

    Article  CAS  Google Scholar 

  10. Breadmore, M. C., Boyce, M., Macka, M., Avdalovic, N., and Haddad, P. R. (2000), Peak shapes in open tubular ion-exchange capillary electrochromatography of inorganic anions. J. Chromatogr. A. 892, 301–313.

    Article  Google Scholar 

  11. Kapnissi-Christodoulou, C. P., Zhu, X., and Warner, I. M. (2003) Analytical separations in open-tubular capillary electrochromatography. Electrophoresis 24, 3917–3934.

    Article  CAS  PubMed  Google Scholar 

  12. Hu, X., Kamande, M. W., Thiam, S., Kapnissi, C. P., Mwongela, S. M., and Warner, I. M. (2004) Open-tubular capillary electrochromatography/electrospray ionization-mass spectrometry using polymeric surfactant as a stationary phase coating. Electrophoresis 25, 562–568.

    Article  Google Scholar 

  13. Ye, M., Zou, H., Liu, Z., Ni, J., and Zhang, Y. (2000) Capillary electrochromatography using a strong cation exchange column with a dynamic modified cationic surfactant. Anal. Chem. 72, 616–621.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Y., Shi, W., Zhang, L., and Zou, H. (1998) Some aspects of chromatographic behavior in capillary electrochromatography. J. Chromatogr. A. 802, 59–71.

    Article  CAS  Google Scholar 

  15. Angus, P. D. A., Demarest, C. W., Catalano, T., and Stobaugh, J. F. (2000) Aspects of column fabrication for packed capillary electrochromatography. J. Chromatogr. A. 887, 347–365.

    Article  CAS  PubMed  Google Scholar 

  16. Yan. C. (1995) Electrokinetic packing of capillary columns. US Patent no. 5 453 163.

    Google Scholar 

  17. Bailey, C. G. and Yan, C. (1998) Separation of explosives using capillary electrochromatography. Anal. Chem. 70, 3275–3279.

    Article  CAS  Google Scholar 

  18. Yan, C., Dadoo, R., Zare, R. N., Rakestraw, D. J., and Anex, D. S. (1996) Gradient elution in capillary electrochromatography. Anal. Chem. 68, 2726–2730.

    Article  CAS  Google Scholar 

  19. Dadoo, R., Zare, R. N., Yan, C., and Anex, D. S. (1998) Advances in capillary electrochromatography: rapid and high-efficiency separation of PAHs. Anal. Chem. 70, 4787–4792.

    Article  CAS  Google Scholar 

  20. Yan, C., Dadoo, R., Zhao, H., Zare, R. N., and Rakestraw, D. J. (1995) Capillary electrochromatography: analysis of polycyclic aromatic hydrocarbons. Anal. Chem. 67, 2062–2029.

    Article  Google Scholar 

  21. Healy, L. O., Owens, V. P., O’Mahony, T., et al. (2003) Supercritical fluid generated stationary phases for liquid chromatography and capillary electrochromatography. Anal. Chem. 75, 5860–5869.

    Article  CAS  PubMed  Google Scholar 

  22. Roulin, S., Dmoch, R., Carney, R., et al. (2000) Comparison of different packing methods for capillary electrochromatography columns. J. Chromatogr. A. 887, 307–312.

    Article  CAS  PubMed  Google Scholar 

  23. Fermier, A. M. and Colón, L. A. (1998) Capillary electrochromatography in columns packed by centripetal forces. J. Microcol. Sep. 10, 439–447.

    Article  CAS  Google Scholar 

  24. Reynolds, K. J., Maloney, T. D., Fermier, A. M., and Colón, L. A. (1998) Capillary electrochromatography in columns packed by gravity, preliminary study. Analyst 123, 1493–1495.

    Article  CAS  Google Scholar 

  25. Zou, H., Huang, X., Ye, M., and Luo, Q. (2002) Monolithic stationary phases for liquid chromatography and capillary electrochromatography, J. Chromatogr. A. 954, 5–32.

    Article  CAS  PubMed  Google Scholar 

  26. Hilder, E. F., Svec, F., and Fréchet, J. M. J. (2004) Development and application of polymeric monolithic stationary phases for capillary electrochromatography. J. Chromatogr. A. 1044, 3–22.

    Article  CAS  PubMed  Google Scholar 

  27. Zimina, T. M, Smith, R. M., and Myers, P. (1997) Comparison of ODS-modified silica gels as stationary phases for electrochromatography in packed capillaries. J. Chromatogr. A. 758, 191–197.

    Article  CAS  Google Scholar 

  28. Augus, P. D. A., Demarest, C. W., Catalano, T., and Stobaugh, J. F. (2000) Aspects of column fabrication for packed capillary electrochromatography. J. Chromatogr. A. 887, 347–365.

    Article  Google Scholar 

  29. Angus, P. D. A., Demarest, C. W., Catalano, T., and Stobaugh, J. F. (1999) Evaluation of 1.5 UPmum reversed phase nonporous silica in packed capillary electrochromatography and application in pharmaceutical analysis. Electrophoresis 20, 2349–2359.

    Article  CAS  PubMed  Google Scholar 

  30. Chen, Y., Gerhardt, G., and Cassidy, R. (2000) Silicate polymerization for the preparation of bed-retention frits in capillary electrochromatography. Anal. Chem. 72, 610–615.

    Article  CAS  PubMed  Google Scholar 

  31. Ishizuka, N., Minakuchi, H., Nakanishi, K., et al. (2000) Performance of a monolithic silica column in a capillary under pressure-driven and electrodriven conditions. Anal. Chem. 72, 1275–1280.

    Article  CAS  PubMed  Google Scholar 

  32. Palm, A. and Novotny, M. V. (1997) Macroporous polyacrylamide/poly(ethylene glycol) matrices as stationary phases in capillary electrochromatography. Anal. Chem. 69, 4499–4507.

    Article  CAS  Google Scholar 

  33. Gusev, I., Huang, X., and Horváth, C. (1999) Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary eletrochromatography. J. Chromatogr. A. 855, 273–290.

    Article  CAS  PubMed  Google Scholar 

  34. Yan, L., Zhang, Q., Zhang, J., et al. (2004) Hybrid organic–inorganic monolithic stationary phase for acidic compounds separation by capillary electrochromatography. J. Chromatogr. A. 1046, 255–261.

    Article  CAS  PubMed  Google Scholar 

  35. Ping, G., Zhang, L., Zhang, L., et al. (2004) Separation of acidic and basic compounds in capillary electrochromatography with polymethacrylate-based monolithic columns. J. Chromatogr. A. 1035, 265–270.

    Article  CAS  PubMed  Google Scholar 

  36. Lai, E. P. C. and Dabek-Zlotorzynska, E. (1999) Separation of theophylline, caffeine and related drugs by normal-phase capillary electrochromatography, Electrophoresis 12, 2366–2372.

    Article  Google Scholar 

  37. Vickers, P. J. and Smith, N. W. (2002) Normal-phase chiral separations by pressure assisted capillary electrochromatography using the Pirkle type stationary phase Whelk-O 1. J. Sep. Sci. 25, 1284–1290.

    Article  CAS  Google Scholar 

  38. Scherer, B. and Steiner, F. (2001) Application of hydrophobic anion-exchange phases in capillary electrochromatography. J. Chromatogr. A. 924, 197–209.

    Article  CAS  PubMed  Google Scholar 

  39. Ye, M., Zou, H., Liu, Z., and Ni, J. (2000) Separation of peptides by strong cation-exchange capillary electrochromatography. J. Chromatogr. A. 869, 385–394.

    Article  CAS  PubMed  Google Scholar 

  40. Manetto, G., Bellini, M. S., and Deyl, Z. (2003) Affinity electrochromatography of acidic drugs using a liposome-modified capillary. J. Chromatogr. A. 990, 281–289.

    Article  CAS  PubMed  Google Scholar 

  41. Ye, M., Zou, H., Liu, Z., Wu, R., Lei, Z., and Ni, J. (2002) Study of competitive binding of enantiomers to protein by affinity capillary electrochromatography. J. Pharm. Biomed. Anal. 27, 651–660.

    Article  CAS  PubMed  Google Scholar 

  42. Kok, W. Th. (2004) Capillary electrochromatography in the size-exclusion mode. J. Chromatogr. A. 1044, 145–151.

    Article  CAS  PubMed  Google Scholar 

  43. Mistry, K., Krull, I., and Grinberg, N. (2003) Size-exclusion capillary electrochromatographic separation of polysaccharides using polymeric stationary phases. Electrophoresis 24, 1753–1763.

    Article  CAS  PubMed  Google Scholar 

  44. Galloway, M. and Soper, S. A. (2002) Contact conductivity detection of polymerase chain reaction products analyzed by reverse-phase ion pair microcapillary electrochromatography. Electrophoresis 23, 3760–3768.

    Article  CAS  PubMed  Google Scholar 

  45. Fu, H., Jin, W., Xiao, H., Huang, H., and Zou, H. (2003) Peptide separation in hydrophilic interaction capillary electrochromatography. Electrophoresis 24, 2084–2091.

    Article  CAS  PubMed  Google Scholar 

  46. Ye, M., Zou, H., Kong, L., Lei, Z., Wu, R., and Ni, J. (2001) Hydrophilic interaction capillary electrochromatography for the separation of polar compounds. LCGC 19, 1076–1086.

    CAS  Google Scholar 

  47. Spikmans, V., Lane, S. J., Tjaden, U. R., and Greef, J. van der, (1999) Automated capillary electrochromatography tandem mass spectrometry using mixed mode reversed-phase ion-exchange chromatography columns. Rapid Commun. Mass Spectrom. 13, 141–149.

    Article  CAS  Google Scholar 

  48. Wu, R., Zou, H., Fu, H., Jin, W., and Ye, M. (2002) Separation of peptides on mixed mode of reversed-phase and ion-exchange capillary electrochromatography with a monolithic column. Electrophoresis 23, 1239–1245.

    Article  CAS  PubMed  Google Scholar 

  49. Charvátová, J., Král, V., and Deyl, Z. (2002) Capillary electrochromatographic separation of aromatic acids possessing peptides using porphyrin derivatives as the inner wall modifiers. J. Chromatogr. B. 770, 155–163.

    Article  Google Scholar 

  50. Chen, Z. and Hobo, T. (2001) Chemically L-prolinamide-modified monolithic silica column for enantiomeric separation of dansyl amino acids and hydroxy acids by capillary electrochromatography and UPmu-high performance liquid chromatography. Electrophoresis 22, 3339–3346.

    Article  CAS  PubMed  Google Scholar 

  51. Oguri, S., Yoneya, Y., Mizunuma, M., Fujiki, Y., Otsuka, K., and Terabe, S. (2002) Selective detection of biogenic amines using capillary electrochromatography with an on-column derivatization technique. Anal. Chem. 74, 3463–3469.

    Article  CAS  PubMed  Google Scholar 

  52. Wu, R., Zou, H., Ye, M., Lei, Z., and Ni, J. (2001) Capillary electrochromatography for separation of peptides driven with electrophoretic mobility on monolithic column. Anal. Chem. 73, 4918–4923.

    Article  CAS  PubMed  Google Scholar 

  53. Matyska, M. T., Pesek, J. J., Boysen, R. I., and Hearn, M. T. W. (2001) Characterization of open tubular capillary electrochromatography columns for the analysis of synthetic peptides using isocratic conditions. Anal. Chem. 73, 5116–5125.

    Article  CAS  PubMed  Google Scholar 

  54. Walhagen, K., Unger, K. K., and Hearn, M. T. W. (2001) Capillary electrochromatography analysis of hormonal cyclic and linear peptides. Anal. Chem. 73, 4924–4936.

    Article  CAS  PubMed  Google Scholar 

  55. Pesek, J. J., Matyska, M. T., Dawson, G. B., Chen, J. I. -C., Boysen, R. I., and Hearn, M. T. W. (2004) Open tubular capillary electrochromatography of synthetic peptides on etched chemically modified columns. Anal. Chem. 76, 23–30.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, K., Jiang, Z., Yao, C., Zhang, Z., Wang, Q., Gao, R., and Yan, C. (2003) Separation of peptides by pressurized capillary electrochromatography. J. Chromatogr. A. 987, 453–458.

    Google Scholar 

  57. Que, A. H., Mechref, Y., Huang, Y., Taraszka, J. A., Clemmer, D. E., and Novotny, M. V. (2003) Coupling capillary electrochromatography with electrospray Fourier transform mass spectrometry for characterizing complex oligosaccharide pools. Anal. Chem. 75, 1684–1690.

    Article  CAS  PubMed  Google Scholar 

  58. Que, A. H., Palm, A., Baker, A. G., and Novotny, M. V. (2000) Steroid profiles determined by capillary electrochromatography, laser-induced fluorescence detection and electrospray–mass spectrometry. J. Chromatogr. A. 887, 379–391.

    Article  CAS  PubMed  Google Scholar 

  59. Jiskra, J., Claessens, H. A., and Cramers, C. A. (2002) Method development for the separation of steroids by capillary electrochromatography. J. Sep. Sci. 25, 1337–1345.

    Article  CAS  Google Scholar 

  60. Jin, W., Fu, H., Huang, X., Xiao, H., and Zou, H. (2003) Optimized preparation of poly(styrene-co-divinylbenzene-co-methacrylic acid) monolithic capillary column for capillary electrochromatography. Electrophoresis 24, 3172–3180.

    Article  CAS  PubMed  Google Scholar 

  61. Que, A. H., Konse, T., Baker, A. G., and Novotny, M. V. (2000) Analysis of bile acids and their conjugates by capillary electrochromatography/electrospray ion trap mass spectrometry. Anal. Chem. 72, 2703–2710.

    Article  CAS  PubMed  Google Scholar 

  62. Ping, G., Schmitt-Kopplin, P., Hertkorn, N., Zhang, W., and Kettrup, A. (2004) Separation of selected humic degradation compounds by capillary electrochromatography with monolithic and packed columns. Electrophoresis 24, 958–969.

    Article  Google Scholar 

  63. Starkey, J. A., Abrantes, S., Mechref, Y., and Novotny, M. V. (2003) Sensitive analyses of agricultural chemicals by capillary electrochromatography. J. Sep. Sci. 26, 1635–1642.

    Article  CAS  Google Scholar 

  64. Bedair, M. and El Rassi, Z. (2002) Capillary electrochromatography with monolithic stationary phases: 1. preparation of sulfonated stearyl acrylate monoliths and their electrochromatographic characterization with neutral and charged solutes. Electrophoresis 23, 2938–2948.

    Article  CAS  PubMed  Google Scholar 

  65. Mangelings, D., Hardies, N., Maftouh, M., Suteu, C., Massart, D. L., and Heyden, Y. V. (2003) Enantioseparations of basic and bifunctional pharmaceuticals by capillary electrochromatography using polysaccharide stationary phases. Electrophoresis 24, 2567–2576.

    Article  CAS  PubMed  Google Scholar 

  66. Thiam, S., Shamsi, S. A., Henry, C. W., Robinson, J. W., and Warner, I. M. (2000) Capillary electrochromatography of cholesterol and its ester derivatives. Anal. Chem. 72, 2541–2564.

    Article  CAS  PubMed  Google Scholar 

  67. Ping, G., Zhang, W., Zhang, L., Schmitt-Kopplin, P., Zhang, Y., and Kettrup, A. (2003) Rapid separation of nucleosides by capillary electrochromatography with a methacrylate-based monolithic stationary phase. Chromatographia 57, 629–633.

    Article  CAS  Google Scholar 

  68. Charles, J. A. M. and McGown, L. B. (2003) Separation of Trp-Arg and Arg-Trp using G-quartet-forming DNA oligonucleotides in open-tubular capillary electrochromatography. Electrophoresis 23, 1599–1604.

    Article  Google Scholar 

  69. Huang, Y. C., Lin, C. C., and Liu, C. Y. (2004) Preparation and evaluation of molecularly imprinted polymers based on 9-ethyladenine for the recognition of nucleotide bases in capillary electrochromatography. Electrophoresis 25, 554–561.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, J., Huang, X., Zhang, S., and Horváth, C. (2000) Capillary electrochromatography of proteins on an anion-exchange column. Anal. Chem. 72, 3022–3029.

    Article  CAS  PubMed  Google Scholar 

  71. Hilmi, A. and Luong, J. H. T. (2000) In-line coupling capillary electrochromatography with amperometric detection for analysis of explosive compounds. Electrophoresis 21, 1395–1404.

    Article  CAS  PubMed  Google Scholar 

  72. Gfrorer, P., Tseng, L. H., Rapp, E., Albert, K., and Bayer, E. (2001) Influence of pressure upon coupling pressurized capillary electrochromatography with nuclear magnetic resonance spectrometry. Anal. Chem. 73, 3234–3239.

    Article  CAS  PubMed  Google Scholar 

  73. Barceló-Barrachina, E., Moyano, E., and Galceran, M. T. (2004) State-of-the-art of the hyphenation of capillary electrochromatography with mass spectrometry. Electrophoresis 25, 1927–1948.

    Article  PubMed  Google Scholar 

  74. Klampfl, C. W. (2004) Review coupling of capillary electrochromatography to mass spectrometry. J. Chromatogr. A. 1044, 131–144.

    Article  CAS  PubMed  Google Scholar 

  75. Schmitt-Kopplin, P. and Frommberger, M. (2003) Capillary electrophoresis-mass spectrometry: 15 years of developments and applications. Electrophoresis 24, 3837–3867.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, Y., Zhu, J., Zhang, L., and Zhang, W. (2000) High-efficiency on-line concentration technique of capillary electrochromatography. Anal. Chem. 72, 5744–5747.

    Article  CAS  PubMed  Google Scholar 

  77. Ping, G., Zhang, Y., Zhang, W., et al. (2004) On-line concentration of neutral and charged species in capillary electrochromatography with a methacrylate-based monolithic stationary phase. Electrophoresis 25, 421–427.

    Article  CAS  PubMed  Google Scholar 

  78. Burgi, D. S. and Chien, R. L. (1991) Optimization in sample stacking for high-performance capillary electrophoresis. Anal. Chem. 63, 2042–2047.

    Article  CAS  Google Scholar 

  79. Moffatt, F., Copper, P. A., and Jessop, K. M. (1999) Capillary electrochromatography. abnormally high efficiencies for Neutral-anionic compounds under reversed-phase conditions. Anal. Chem. 71, 1119–1124.

    Article  CAS  Google Scholar 

  80. Altria, K. D., Smith, N. W., and Turnbull, C. H. (1998) Analysis of acidic compounds using capillary electrochromatography. J. Chromatogr. B. 717, 341–353.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work is partially supported by National Natural Science Foundation of China (No. 20105006) and 973 Project of the Ministry of Science and Technology of China (No. 001CB510202), a grant form the New Energy and Industrial Technology Development Organization of the Ministry of Economy, Trade and Industry, the CREST program of the Japan Science and Technology Corporation, a Grant-in-Aid for Scientific Research from the Ministry of Health and Welfare, a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Technology, and a Grant-in-aid of the 21st Century COE program from the Ministry of Education, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ping, G., Schmitt-Kopplin, P., Zhang, Y., Baba, Y. (2008). Capillary Electrochromatography and On-Line Concentration. In: Schmitt-Kopplin, P. (eds) Capillary Electrophoresis. Methods In Molecular Biology™, vol 384. Humana Press. https://doi.org/10.1007/978-1-59745-376-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-376-9_31

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-539-2

  • Online ISBN: 978-1-59745-376-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics