Skip to main content

A Semi-Empirical Approach for a Rapid Comprehensive Evaluation of the Electrophoretic Behaviors of Small Molecules in Free-Zone Electrophoresis

  • Protocol
Capillary Electrophoresis

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 384))

Summary

A phenomenological model is proposed for the evaluation of relative electrophoretic migration of charged substances present in mixtures and for the rapid pH optimization prior to capillary zone electrophoresis method development. The simple and robust model is based on the Offord model, which takes account of the chemical structure. The effective charge and the molecular mass of the molecule are needed; the charge can easily be calculated from pK_a obtained from known sources or simulated with existing pK-calculation programs. A first example was chosen with the separation of hydroxy-s-triazines to illustrate the applicability of this simple approach for determination of the first buffer-pH conditions prior experimental method optimization when separation of different ions is needed. In a second example, the confirmation of aminialcohols in the CZE method development of unsaturated hexahydro-triazines and oxasolidines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cifuentes, A. and Poppe, H. (1995) Effect of ph and ionic strength of running buffer on peptide behavior in capillary electrophoresis: theoretical calculation and experimental evaluation. Electrophoresis 16, 516–524.

    Article  CAS  PubMed  Google Scholar 

  2. Cifuentes, A. and Poppe, H. (1997) Behavior of peptides in capillary electrophoresis: effect of peptide charge, mass and structure. Electrophoresis 18, 2362–2376.

    Article  CAS  PubMed  Google Scholar 

  3. Chen, N., Wang, L., and Zhang, Y. K. (1993) Correlation free-solution capillary electrophoresis migration times of small peptides with physicochemical properties. Chromatographia 37, 429–432.

    Article  CAS  Google Scholar 

  4. Grossman, P. D., Colburn, J. C., and Lauer, H. H. (1989) A semiempirical model for the electrophoretic mobilities of peptides in free-solution capillary electrophoresis. Anal. Biochem. 179, 28–33.

    Article  CAS  PubMed  Google Scholar 

  5. Rickard, E. C., Strohl, M. M., and Nielsen, R. G. (1991) Correlation of electrophoretic mobilities from capillary electrophoresis with physicochemical properties of proteins and peptides. Anal. Biochem. 197, 197–207.

    Article  CAS  PubMed  Google Scholar 

  6. Havel, J. and Janos, P. (1997) Evaluation of capillary zone electrophoresis equilibrium data using the CELET program. J. Chromatogr. A 786, 321–331.

    Article  CAS  Google Scholar 

  7. Britz-McKibin, P. and Chen, D. D. Y. (1997) Prediction of the migration behavior of analytes in capillary electrophoresis based on three fundamental parameters. J. Chromatogr. A 781, 23–34.

    Article  Google Scholar 

  8. Sahota, R. S. and Khaledl, M. G. (1994) Target factor modeling of migration behavior in capillary electrophoresis. Anal. Chem. 66, 2374–2381.

    Article  CAS  PubMed  Google Scholar 

  9. Ermakov, S. V., Bello, M. S., and Righetti, P. G. (1994) Numerical algorithms for capillary electrophoresis. J. Chromatogr. A 661, 265–278.

    Article  Google Scholar 

  10. Gas, B., Vacik, J., and Zelensky, I. (1991) Computer-aided simulation of electromigration. J. Chromatogr. 545, 225–237.

    Article  CAS  Google Scholar 

  11. Kohlrausch, F. (1897) Ueber Concentrations-Verschiebungen durch Electrolyse im Inneren von Lösungen und Lösungsgemischen. Annalen der Physik und Chemie, Band 62, 210–239.

    Google Scholar 

  12. Ermakov, S. V., Mazhorova, O. S., and Zhukov, M. Y. (1992) Computer simulation of transient states in capillary zone electrophoresis and isotachophoresis. Electrophoresis 13, 838–848.

    Article  CAS  PubMed  Google Scholar 

  13. Gluck, S. J., Steele, K. P., and Benkö, M. H. (1996) Determination of acidity constants of monoprotic and diprotic acids by capillary electrophoresis. J. Chromatogr. A 745, 117–125.

    Article  CAS  Google Scholar 

  14. Schmitt, P., Poiger, T., Simon, R., Garrison, A. W., Freitag, D., and Kettrup, A. (1997) Simultaneous ionization constants and isoelectric points determination of 12 hydroxy-s-triazines by capillary zone electrophoresis (CZE) and capillary electrophoresis isoelectric focusing (CIEF). Anal. Chem. 69, 2559–2566.

    Article  CAS  Google Scholar 

  15. Freitag, D., Schmitt-Kopplin, P., Simon, R., Kaune, A., and Kettrup, A. (1999) Interactions of hydroxy-s-triazines with SDS-micelles by micellar electrokinetic capillary chromatography (MEKC). Electrophoresis 20, 1568–1577.

    Article  CAS  PubMed  Google Scholar 

  16. Gao, J., Gomez, F. A., Härter, R., and Whitesides, G. M. (1994) Determination of the effective charge of a protein in solution by capillary electrophoresis. Proc. Natl. Acad. Sci. U. S. A. 91, 12027–12030.

    Article  CAS  PubMed  Google Scholar 

  17. Menon, M. K. and Zydney, A. L. (1998) Measurement of protein charge and ion binding using capillary electrophoresis. Anal. Chem. 70, 1581–1584.

    Article  CAS  PubMed  Google Scholar 

  18. Schmitt, P., Trapp, I., Garrison, A. W., Freitag, D., and Kettrup, A. (1997) Binding of s-triazines to dissolved humic substances: electrophoretic approaches using affinity capillary electrophoresis (ACE) and micellar electrokinetic chromatography (MEKC). Chemosphere 35, 55–75.

    Article  CAS  Google Scholar 

  19. Offord, R. E. (1966) Electrophoretic mobilities of peptides on paper and their use in the determination of amide groups. Nature 211, 591.

    Google Scholar 

  20. Compton, B. J. (1991) Electrophoretic modeling of proteins in free solution zone capillary electrophoresis and its application to monoclonal antibody microheterogeneity analysis. J. Chromatogr. 559, 357.

    Google Scholar 

  21. Nikodo, A. E., Garnier, J. M., Tinland, B., et al. (2001) Diffusion coefficient of DNA molecules during free solution electrophoresis. Electrophoresis 22, 2424–2432.

    Article  Google Scholar 

  22. Cross, R. F. and Cao, J. (1997) Salt effects in capillary zone electrophoresis 1. Dependence of electrophoretic mobilities upon the hydrodynamic radius. J. Chromatogr. A 786, 171–180.

    Article  CAS  Google Scholar 

  23. Cifuentes, A. and Poppe, H. (1994) Simulation and optimization of peptide separation by capillary electrophoresis. J. Chromatogr. A 680, 321–340.

    Article  CAS  PubMed  Google Scholar 

  24. Fu, S. and Lucy, C. A. (1998) Prediction of electrophoretic mobilities. 1. Monoamines. Anal. Chem. 70, 173–181.

    Article  CAS  Google Scholar 

  25. McGowan, J. C. (1990) A new approach for the calculation of HLB values of surfactants. Analysis 27, 229–230.

    CAS  Google Scholar 

  26. Fekete, J., Morovjan, G., Csizmadia, F., and Darvas, F. (1994) Method development by an expert system: Advantages and limitations. J. Chromatogr. A 660, 33–46.

    Article  CAS  Google Scholar 

  27. Hilal, S. H. and Karickhoff, S. W. (1995) A rigorous test for SPARC’s chemical reactivity models: estimation of more than 4300 ionization pkas. Quantitative Structures - Activity Relationships 14, 348–355.

    Article  CAS  Google Scholar 

  28. Karickhoff, S. W., McDaniel, V. K., Melton, C., Vellino, A. N., Nute, D. E., and Carreira, L. A. (1991) Predicting chemical reactivity by computer. Environ. Toxicol. Chem. 10, 1405–1416.

    Article  CAS  Google Scholar 

  29. Dabek-Zlotorzynska, E. and Dlouhy, J. F. (1994) Capillary zone electrophoresis with indirect UV detection of organic ions using 2,6-naphthalenedicarboxylic acid. J. Chromatogr. A 685, 145–153.

    Article  CAS  Google Scholar 

  30. Souza, S. R., Tavares, M. F. M., and Carvalho de, L. R. F. (1998) Systematic approach to the separation of mono- and hydroxycarboxylic acids in environmental samples by ion chromatography and capillary electrophoresis. J. Chromatogr. A 796, 335–346.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

H. Neumeir and B. Look are thanked for their technical assistance and their kind support during the past years.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schmitt-Kopplin, P., Fekete, A. (2008). A Semi-Empirical Approach for a Rapid Comprehensive Evaluation of the Electrophoretic Behaviors of Small Molecules in Free-Zone Electrophoresis. In: Schmitt-Kopplin, P. (eds) Capillary Electrophoresis. Methods In Molecular Biology™, vol 384. Humana Press. https://doi.org/10.1007/978-1-59745-376-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-376-9_23

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-539-2

  • Online ISBN: 978-1-59745-376-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics