Skip to main content

Microchip Capillary Electrophoresis

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 509))

Summary

Microchip capillary electrophoresis (MCE) is gaining popularity due to the developments of simple microfabrication methods under nonstringent laboratory conditions. Moreover, the low material and production costs of polymer-based microchips have further stimulated advances in the applications of MCE in various fields, including clinical analysis, drug screening, biomarker identification, and biosensing. In this chapter, a simple and robust protocol for fabrication of microchips for lab-on-chip testing and microchip electrophoresis is described. The microchips are hybrid poly(dimethylsiloxane) (PDMS)/glass microchips, which are produced by a combination of photolithography and micromolding processes. This type of microchip has been used in a wide range of analyses.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Greenwood , P. A. and Greenway , G. M. (2002) Sample manipulation in micro total analytical systems . TrAC—Trends Anal. Chem.. 21, 726–740.

    Article  CAS  Google Scholar 

  2. Lichtenberg , J. , de Rooij , N. F. and Verpoorte , E. (2002) Sample pretreatment on microfabricated devices . Talanta 56, 233–266.

    Article  CAS  Google Scholar 

  3. Jakeway, S. C., de Mello, A. J. and Russell, E. L. (2000) Miniaturized total analysis systems for biological analysis . Fresenius J. Anal. Chem.. 366, 525–539.

    Article  CAS  Google Scholar 

  4. 4 . McClain, M. A., Culbertson, C. T., Jacobson, S. C., Allbritton, N. L., Sims, C. E. and Ramsey, J. M. (2003) Microfluidic devices for the high-throughput chemical analysis of cells . Anal. Chem. 75, 5646–5655.

    Article  CAS  Google Scholar 

  5. Li, S. F. Y. and Kricka, L. J. (2006) Clinical analysis by microchip capillary electrophore-sis. Clin. Chem. 52, 37–45.

    Article  CAS  Google Scholar 

  6. Park, J. Y. and Kricka, L. J. (2007) Prospects for nano- and microtechnologies in clinical point-of-care testing. Lab Chip 7, 547–549.

    Article  CAS  Google Scholar 

  7. Panaro, N. J., Yuen, P. K., Sakazume, T., Fortina, P., Kricka, L. J. and Wilding, P. (2000) Evaluation of DNA fragment sizing and quantification by the Agilent 2100 Bioanalyzer. Clin. Chem. 46, 1851–1853.

    CAS  Google Scholar 

  8. Fleige, S., Walf, V., Huch, S., Prgomet, C., Sehm, J. and Pfaffl, M. W. (2006) Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. Biotechnol. Lett. 28, 1601–1613.

    Article  CAS  Google Scholar 

  9. McCormick, R. M., Nelson, R. J., AlonsoAmigo, M. G., Benvegnu J. and Hooper H. H. (1997) Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. Anal. Chem. 69, 2626–2630.

    Article  CAS  Google Scholar 

  10. Kricka, L. J., Fortina, P., Panaro, N. J., Wilding, P., Alonso-Amigo G. and Becker, H. (2002) Fabrication of plastic microchips by hot embossing. Lab Chip2, 1–4.

    Article  CAS  Google Scholar 

  11. Martynova, L., Locascio, L. E., Gaitain, M., Kramer, G. W., Christensen, R. G. and Mac-Crehan, W. A. (1997) Fabrication of plastic microfluid channels by imprinting methods. Anal. Chem. 69, 4783–4789.

    Article  CAS  Google Scholar 

  12. Shadpour, H., Musyimi, H., Chen, J. F. and Soper, S. A. (2006) Physiochemical properties of various polymer substrates and their effects on microchip electrophoresis performance. J. Chromatogr. A 1111, 238–251.

    Article  Google Scholar 

  13. McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H. K., Schueller, O. J. A., Whitesides, G. M. (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40.

    Article  CAS  Google Scholar 

  14. Sia, S. K., Whitesides, G. M. (2003) Microflu- idic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24, 3563–3576.

    Article  CAS  Google Scholar 

  15. Hong, J. W., Fujii, T., Seki, M., Yamamoto, T., Endo, I. (2001) Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane—glass hybrid microchip. Electrophoresis 22, 328–333.

    Article  CAS  Google Scholar 

  16. Law, W. S., Kuban, P., Zha, J. H., Li, S. F. Y., Hauser, P. C. (2005) Determination of vitamin C and preservatives in beverages by conventional capillary electrophoresis and microchip electrophoresis with capacitively coupled contactless conductivity detection. Electrophoresis 26, 4648–4655.

    Article  CAS  Google Scholar 

  17. Goluch, E. D., Nam, J. M., Georganopoulou, D. G., Chiesl, T. N., Shaikh, K. A., Ryu, K. S., Barron, A. E., Mirkin, C. A. and Liu, C. (2006) A bio-barcode assay for on-chip atto-molar-senstivity protein detection. Lab Chip 6, 1293–1299.

    Article  CAS  Google Scholar 

  18. Jung, J., Chen, L., Lee, S., Kim, S., Seong, G. H., Choo, J., Lee, E. K., Oh, C. H. and Lee, S. (2007) Fast and sensitive DNA analysis using changes in the FRET signals of molecular beacons in a PDMS microfluidic channel. Anal. Bioanal. Chem. 387, 2609–2615.

    Article  CAS  Google Scholar 

  19. Dapeng, W., Luo, Y., Zhou, X., Dai, Z. and Liu, B. (2005) Multilayer poly(vinyl alcohol)-adsorbed coating on poly(dimethylsiloxane) microfluidic chips for biopolymer separation. Electrophoresis (2005) 26, 211–218.

    Article  Google Scholar 

  20. Mourzina, Y., Steffen, A., Kalyagin, D., Rein- hard, C. and Offenhaeusser, A. (2005) Capillary zone electrophoresis of amino acids on a hybrid poly(dimethylsiloxane)-glass chip. Electrophoresis 26, 1849–1860.

    Article  CAS  Google Scholar 

  21. Di Carlo, D., Aghdam, N. and Lee, L. P. (2006) Single-cell enzyme concentrations, kinetics and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal. Chem. 78, 4925–4930.

    Article  Google Scholar 

  22. Wang, H. Y., Lu, C. (2006) Electroporation of mammalian cells in a microfluidic channel with geometric variation. Anal. Chem. 78, 5158–5164.

    Article  CAS  Google Scholar 

  23. Hellmich, W., Greif, D., Pelargus, C., Ansel- metti, D. and Ros, A. (2006) Improved native UV laser induced fluoresence detection for single cell analysis in poly(dimethylsiloxane) microflu-idic devices. J Chromatogr. A 1130, 195–200.

    Article  CAS  Google Scholar 

  24. Zhang, Q., Xu, J. J., Chen, H. Y. (2006) Glucose microfluidic biosensors based on immobilizing glucose oxidase in poly(dimethylsiloxane) electrophoretic micochips. J Chromtogr. A 1135, 122–126.

    Article  CAS  Google Scholar 

  25. Zaytseva, N. V., Montagna, R. A. and Bae- umner, A. J. (2005) Microfluidic biosensor for the serotype-specific detection of dengue virus RNA. Anal. Chem. 77, 7520–7527.

    Article  CAS  Google Scholar 

  26. Kricka, L. J. and Wilding, P. (2003) Microchip PCR. Anal. Bioanal. Chem. 377, 820–825.

    Article  CAS  Google Scholar 

  27. Kaigala, G. V., Huskins, R. J., Preiksaitis, J., Pang, X. L., Pilarski, L. M. and Backhouse, C. J. (2006) Automated screening using micro-fluidic chip-based PCR and product detection to assess risk of BK virus-associated nephropa-thy in renal transplant recipients. Electrophore-sis 27, 3753–3763.

    Article  CAS  Google Scholar 

  28. Claire, S. and Groisman, A. (2006) High- throughput and high-resolution flow cytom-etry in molded microfluidic devices. Anal. Chem. 78, 5653–5663.

    Article  Google Scholar 

Download references

Acknowledgments

S.F.Y. Li acknowledges financial support from MOE (AcRF R-143-000-293-112), A-STAR (SERC-PSF 052 101 0044 and SBIC 009/2005), and EWI (MEWR C651/06/144).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tay, E.T.T., Law, W.S., Li, S.F.Y., Kricka, L.J. (2009). Microchip Capillary Electrophoresis. In: Bilitewski, U. (eds) Microchip Methods in Diagnostics. Methods in Molecular Biology™, vol 509. Humana Press. https://doi.org/10.1007/978-1-59745-372-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-372-1_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-955-0

  • Online ISBN: 978-1-59745-372-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics