Skip to main content

Quantifying the Roles of Water and Solutes (Denaturants, Osmolytes, and Hofmeister Salts) in Protein and Model Processes Using the Solute Partitioning Model

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 490))

Abstract

Salts and uncharged solutes in aqueous solution exert effects on a wide range of processes in which large amounts of biopolymer surface are buried or exposed (folding/unfolding, complexation/dissociation, or precipitation/dissolution). A simple two-state solute partitioning model (SPM, where the solute is partitioned between the bulk and surface water) allows the interpretation and prediction of the thermodynamic effects of various uncharged solutes (e.g., urea, glycine betaine) on protein and nucleic acid processes in terms of structural information. The correlation of solute effects with various coarse-grained types of biopolymer surface exposed or buried in a process provides a novel probe for investigation of large-scale conformational changes. Solutes that are fully excluded from one or more types of biopolymer surface are useful to quantify changes in water of hydration of these surfaces in biopolymer processes. Additionally, application of the SPM to the analysis of non-Coulombic salt effects on various model processes provides an estimate for the hydration layer at surfaces and shows that ion effects are additive and independent of the nature of the counterion.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Record, M. T. Jr., Zhang, W., Anderson, C. F. (1998) Analysis of effects of salts and uncharged solutes on protein and nucleic acid equilibria and processes: A practical guide to recognizing and interpreting polyelectrolyte effects, Hofmeister effects, and osmotic effects of salts. Adv Protein Chem 51, 281–353.

    Article  PubMed  CAS  Google Scholar 

  2. Timasheff, S. N. (1998) Control of protein stability and reactions by weakly interacting cosolvents: The simplicity of the complicated. Adv Protein Chem 51, 355–432.

    Article  PubMed  CAS  Google Scholar 

  3. Baldwin, R. L. (1996) How Hofmeister ion interactions affect protein stability. Biophys J 71, 2056–2063.

    Article  PubMed  CAS  Google Scholar 

  4. Myers, J. K., Pace, C. N., Scholtz, J. M. (1995) Denaturant m-values and heat capacity changes: Relation to changes in accessible surface areas of protein unfolding. Protein Sci 4, 2138–2148.

    Article  PubMed  CAS  Google Scholar 

  5. Record, M. T. Jr., Anderson, C. F. (1995) Interpretation of preferential interaction coefficients of nonelectrolytes and of electrolyte ions in terms of a two-domain model. Biophys J 68, 786–794.

    Article  PubMed  CAS  Google Scholar 

  6. Felitsky, D. J., Record, M. T. Jr. (2004) Application of the local-bulk partitioning and competitive binding models to interpret preferential interactions of glycine betaine and urea with protein surface. Biochemistry 43, 9276–9288.

    Article  PubMed  CAS  Google Scholar 

  7. Courtenay, E. S., Capp, M. W., Saecker, R. M., et al. (2000) Thermodynamic analysis of interactions between denaturants and protein surface exposed on unfolding: Interpretation of urea and guanidinium chloride m-values and their correlation with changes in accessible surface area (ASA) using preferential interaction coefficients and the local-bulk domain. Proteins 41, 72–85.

    Article  Google Scholar 

  8. Pegram, L. M., Record, M. T. Jr. (2006) Partitioning of atmospherically relevant ions between bulk water and the water/vapor interface. Proc Natl Acad Sci USA 103, 14278–14281.

    Article  PubMed  CAS  Google Scholar 

  9. Pegram, L. M., Record, M. T. Jr. (2007) Hofmeister effects on surface tension arise from partitioning of cations and anions between bulk water and the air–water interface. J Phys Chem B 111, 5411–5417.

    Article  PubMed  CAS  Google Scholar 

  10. Courtenay, E. S., Capp, M. W., Anderson, C. F., et al. (2000) Vapor pressure osmometry studies of osmolyte–protein interactions: Implications for the action of osmoprotectants in vivo and for the interpretation of “osmotic stress” experiments in vitro. Biochemistry 39, 4455–4471.

    Article  PubMed  CAS  Google Scholar 

  11. Courtenay, E. S., Capp, M. W., Record, M. T. Jr. (2001) Thermodynamics of interactions of urea and guanidinium salts with protein surface: Relationship between solute effects on protein processes and changes in water-accessible surface area. Protein Sci 10, 2485–2497.

    Article  PubMed  CAS  Google Scholar 

  12. Felitsky, D. J., Cannon, J. G., Capp, M. W., et al. (2004) The exclusion of glycine betaine from anionic biopolymer surface: Why glycine betaine is an effective osmoprotectant but also a compatible solute. Biochemistry 43, 14732–14743.

    Article  PubMed  CAS  Google Scholar 

  13. Hong, J., Capp, M. W., Saecker, R. M., et al. (2005) Use of urea and glycine betaine to quantify coupled folding and probe the burial of DNA phosphates in Lac Repressor–Lac Operator binding. Biochemistry 44, 16896–16911.

    Article  PubMed  CAS  Google Scholar 

  14. Kontur, W. S., Saecker, R. M., Davis, C. A., et al. (2006) Solute probes of conformational changes in open complex (RPo) formation by Escherichia coli RNA polymerase at the λPR promoter: Evidence for unmasking of the active site in the isomerization step and for large-scale coupled folding in the subsequent conversion to RPo. Biochemistry 45, 2161–2177.

    Article  PubMed  CAS  Google Scholar 

  15. Scatchard, G., Hamer, W. J., Wood, S. E. (1938) Isotonic solutions. I. The chemical potential of water in aqueous solutions of sodium chloride, potassium chloride, sulfuric acid, sucrose, urea and glycerol at 25°C. J Am Chem Soc 60, 3061–3070.

    Article  CAS  Google Scholar 

  16. Robinson, R. A., Stokes, R. H. (1959) Electrolyte Solutions. Butterworths, London, England.

    Google Scholar 

  17. Vander Meulen, K., Saecker, R. M., Record, M. T. Jr. (2008) Formation of a wrapped protein–DNA interface: FRET and ITC characterization of large contributions of ions and water to the thermodynamics of binding IHF to H'DNA. J Mol Biol 377, 9–27.

    Google Scholar 

  18. Cannon, J. G., Anderson, C. F., Record, M. T. Jr. (2007) Urea–amide preferential interactions in water: Quantitative comparison of model compound data with biopolymer results using water accessible surface areas. J Phys Chem B 111, 9675–9685.

    Article  PubMed  CAS  Google Scholar 

  19. Scholtz, J. M., Barrick, D., York, E. J., et al. (1995) Urea unfolding of peptide helices as a model for interpreting protein unfolding. Proc Natl Acad Sci USA 92, 185–189.

    Article  PubMed  CAS  Google Scholar 

  20. Humphrey, W., Dalke, A., Schulten, K. (1996) VMD – Visual molecular dynamics. J Molec Graphics 14, 33–38.

    Article  CAS  Google Scholar 

  21. Roe, J. H., Record, M. T. Jr. (1985) Regulation of the kinetics of the interaction of Escherichia coli RNA polymerase with the λPR promoter by salt concentration. Biochemistry 24, 4721–4726.

    Article  PubMed  CAS  Google Scholar 

  22. Washburn, E. W. (ed.) (2003) International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, 1st electronic ed. Knovel, Norwich, NY.

    Google Scholar 

  23. Kumar, A. (2001) Aqueous guanidinium salts Part II. Isopiestic osmotic coefficients of guanidinium sulphate and viscosity and surface tension of guanidinium chloride, bromide, acetate, perchlorate, and sulphate solutions at 298.15 K. Fluid Phase Equilib 180, 195–204.

    Article  CAS  Google Scholar 

  24. Petersen, P. B., Saykally, R. J. (2006) On the nature of ions at the liquid water surface. Annu Rev Phys Chem 57, 333–364.

    Article  PubMed  CAS  Google Scholar 

  25. Long, F. A., McDevit, W. F. (1952) Activity coefficients of nonelectrolyte solutes in aqueous salt solutions. Chem Rev 51, 119–169.

    Article  CAS  Google Scholar 

  26. Nandi, P. K., Robinson, D. R. (1972) The effects of salts on the free energy of the peptide group. J Am Chem Soc 94, 1299–1308.

    Article  PubMed  CAS  Google Scholar 

  27. Pegram, L. M., Record, M. T. Jr. (2008) Thermodynamic Origin of Hofmeister ion effects. J Phys Chem B 112, 9428–9436.

    Google Scholar 

Download references

Acknowledgements

Research from the author’s laboratory cited here and the preparation of this review are supported by NIH grants GM47022 and GM23467.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pegram, L.M., Record, M.T. (2009). Quantifying the Roles of Water and Solutes (Denaturants, Osmolytes, and Hofmeister Salts) in Protein and Model Processes Using the Solute Partitioning Model. In: Shriver, J. (eds) Protein Structure, Stability, and Interactions. Methods in Molecular Biology, vol 490. Humana Press. https://doi.org/10.1007/978-1-59745-367-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-367-7_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-954-3

  • Online ISBN: 978-1-59745-367-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics