Skip to main content

Ligand-Binding Interactions and Stability

  • Protocol
  • First Online:
Protein Structure, Stability, and Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 490))

Abstract

The reversible interaction or binding of ligands to biological macromolecules is fundamental to nearly every aspect of biochemistry and cell biology. Binding events typically do not occur in isolation in biochemistry, and are almost always coupled or linked to other reactions such as protonation changes, other ligand-binding interactions, structural transitions, and folding. It is rarely sufficient to simply state that something binds. An understanding of binding requires a measure of affinity, stoichiometry, and the contributions of linked reactions. Emphasis is placed here on defining binding and the influence of linkage on binding and stability using both spectroscopic and calorimetric data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This work was supported by the National Institutes of Health (GM 49686).

References

  1. Edsall, J. T., Gutreund, H. (1983) Biothermodynamics, John Wiley and Sons, New York.

    Google Scholar 

  2. Conners, K. A. (1987) Binding Constants: The Measurement of Molecular Complex Stability, John Wiley, New York.

    Google Scholar 

  3. Wyman, J., Gill, S. J. (1990) Binding and Linkage: Functional Chemistry of Biological Macromolecules, University Science Books, Mill Valley, CA.

    Google Scholar 

  4. Marshall, A. G. (1978) Biophysical Chemistry, John Wiley & Sons, New York.

    Google Scholar 

  5. Eisenberg, D., Crothers, D. (1979) Physical Chemistry with Applications to the Life Sciences, Benjamin/Cummings, Menlo Park, CA.

    Google Scholar 

  6. Lumry, R., Biltonen, R., Brandts, J. (1966) Validity of the “two-state” hypothesis for conformational transitions of proteins, Biopolymers 4, 917–944.

    Article  PubMed  CAS  Google Scholar 

  7. Biltonen, R. L., Freire, E. (1978) Thermodynamic characterization of conformational states of biological macromolecules using differential scanning calorimetry. CRC Crit Rev Biochem 5, 85–124.

    Article  PubMed  CAS  Google Scholar 

  8. Privalov, P. (1979) Stability of proteins. Small globular proteins. Adv. Protein. Chem. 33, 167–241.

    Article  PubMed  CAS  Google Scholar 

  9. Freire, E. (1995) in (Shirley, B., Ed.) Protein Stability and Folding, Humana Press, Totowa, N.J.

    Google Scholar 

  10. Makhatadze, G., Privalov, P. L. (1995) Energetics of protein structure. Adv Protein Chem 47, 308–425.

    Google Scholar 

  11. Becktel, W., Schellman, J. (1987) Protein stability curves. Biopolymers 26, 1859-1877.

    Article  PubMed  CAS  Google Scholar 

  12. Brandts, J. F., Lin, L.-N. (1990) Study of strong to ultratight protein interactions using differential scanning calorimetry. Biochemistry 29, 6927–6940.

    Article  PubMed  CAS  Google Scholar 

  13. Edsall, J. T., Wyman, J. (1958) Biophysical Chemistry, Academic Press, New York.

    Google Scholar 

  14. Tanford, C. (1970) Protein denaturation. Part C: Theoretical models for the mechanism of denaturation. Adv Protein Chem 24, 1–95.

    Article  PubMed  CAS  Google Scholar 

  15. Perutz, M. F. (1978) Electrostatic effects in proteins. Science 201, 1187–1191.

    Article  PubMed  CAS  Google Scholar 

  16. Honig, B., Nicholls, A. (1995) Classical electrostatics in biology and chemistry. Science 268, 1144–1149.

    Article  PubMed  CAS  Google Scholar 

  17. Yang, A. -S., Honig, B. (1993) On the pH dependence of protein stability. J Mol Biol 231, 459–474.

    Article  PubMed  CAS  Google Scholar 

  18. Garcia-Moreno E. B. (1995) Probing structural and physical basis of protein energetics linked to protons and salt. Meth. Enzymol. 259, 512–538.

    Article  PubMed  CAS  Google Scholar 

  19. Antosiewicz, J., McCammon, J. A., Gilson, M. K. (1996) The determinants of pK as in proteins, Biochemistry 35, 7819–7833.

    Article  PubMed  CAS  Google Scholar 

  20. Baker, B. M., Murphy, K. P. (1996) Evaluation of linked protonation effects in protein binding reactions using isothermal titration calorimetry. Biohphysical J 71, 2049–2055.

    Article  CAS  Google Scholar 

  21. McCrary, B. S., Edmondson, S. P., Shriver, J. W. (1996) Hyperthermophile protein folding thermodynamics: Differential scanning calorimetry and chemical denaturation of Sac7d. J Mol Biol 264, 784–805.

    Article  PubMed  CAS  Google Scholar 

  22. McCrary, B. S., Bedell, J., Edmondson, S. P., et al. (1998) Linkage of protonation and anion binding to the folding of Sac7d. J Mol Biol 276, 203–224.

    Article  PubMed  CAS  Google Scholar 

  23. Clark, A., McCrary, B. S., Edmondson, S., et al. (2004) Thermodynamics of core hydrophobicity and packing in the hyperthermophile proteins Sac7d and Sso7d. Biochemistry 43, 2840–2853.

    Article  PubMed  CAS  Google Scholar 

  24. Lakowicz, J. (1999) Principles of Fluorescence Spectroscopy. Springer, New York.

    Google Scholar 

  25. Wiseman, T., Williston, S., Brandts, J. F., et al. (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179, 131–137.

    Article  PubMed  CAS  Google Scholar 

  26. Breslauer, K. J., Freire, E., Straume, M. (1992) Calorimetry: A tool for DNA and ligand–DNA Studies. Meth Enzymol 211, 533–567.

    Article  PubMed  CAS  Google Scholar 

  27. Bundle, D. R., Sigurskjold, B. W. (1994) Determination of accurate thermodynamics of binding by titration microcalorimetry. Meth Enzymol 247, 288–305.

    Article  PubMed  CAS  Google Scholar 

  28. Lopez, M. M., Makhatadze, G. I. (2002) Isothermal titration calorimetry. Methods Mol Biol 173, 121–126.

    PubMed  CAS  Google Scholar 

  29. Wang, P., Izatt, R. M., Gillespie, S. E., et al. (1995) Thermodynamics of the Interaction of 18-crown-6 with K+, Tl+, Ba+2, Sr+2 and Pb+2 from 323.15 to 398.15 K, J Chem Soc Faraday Trans 91, 4207–4213.

    Article  CAS  Google Scholar 

  30. Bevington, P. (1969) Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, Inc., New York.

    Google Scholar 

  31. Beechem, J. M. (1992) Global analysis of biochemical and biophysical data. Methods Enzymol 210, 37–54.

    Article  PubMed  CAS  Google Scholar 

  32. Gordon, A., Ford, R. (1972) The Chemist's Companion: A Handbook of Practical Data, Techniques, and References, John Wiley, New York, N.Y.

    Google Scholar 

Download references

Acknowledgments

This work was supported by NIH RO1 GM049686.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shriver, J.W., Edmondson, S.P. (2009). Ligand-Binding Interactions and Stability. In: Shriver, J. (eds) Protein Structure, Stability, and Interactions. Methods in Molecular Biology, vol 490. Humana Press. https://doi.org/10.1007/978-1-59745-367-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-367-7_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-954-3

  • Online ISBN: 978-1-59745-367-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics