Skip to main content

Defining the Stability of Multimeric Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 490))

Abstract

The practical application of scanning calorimetry and spectroscopic methods to measure the stability of multimeric proteins is described. Oligomeric proteins are stabilized by both the intrinsic folding energy of the subunits as well as interactions between the subunits. Oligomerization results in a concentration dependence for multimer stability, which increases logarithmically with increasing concentration. Since the increase in stability does not plateau at high protein concentrations, the effect of concentration must be described quantitatively. Straightforward mathematical methods are provided for deriving the appropriate models for multimer unfolding, and methods are presented for analyzing equilibrium unfolding data and stability using the models.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Notes

  1. 1.

    This work was supported by the National Institutes of Health (GM 49686).

References

  1. Makhatadze, G., Privalov, P. L. (1995) Energetics of protein structure. Adv Protein Chem 47, 308–425.

    Google Scholar 

  2. Lumry, R., Biltonen, R., Brandts, J. (1966) Validity of the “two-state” hypothesis for conformational transitions of proteins. Biopolymers 4, 917–944.

    Article  PubMed  CAS  Google Scholar 

  3. Privalov, P., Khechinashvili, N. (1974) A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol 86, 665–684.

    Article  PubMed  CAS  Google Scholar 

  4. Pace, C. N. (1975) The stability of globular proteins. CRC Critical Rev Biochem. 3, 1–43.

    Article  CAS  Google Scholar 

  5. Freire, E., Biltonen, R. (1978) Statistical mechanical deconvolution of thermal transitions in macromolecules. I. Theory and application to homogeneous systems. Biopolymers 17, 463–479.

    Article  CAS  Google Scholar 

  6. Privalov, P. (1979) Stability of proteins. Small globular proteins. Adv Protein Chem 33, 167–241.

    Article  PubMed  CAS  Google Scholar 

  7. Sturtevant, J. (1987) Biochemical applications of differential scanning calorimetry. Ann Rev Phys Chem 38, 463–488.

    Article  CAS  Google Scholar 

  8. Lewis, G. N., Randall, M., Pitzer, K. S., Brewer, L. (1961) Thermodynamics, McGraw-Hill, New York.

    Google Scholar 

  9. Eisenberg, D., Crothers, D. (1979) Physical Chemistry with Applications to the Life Sciences, Benjamin/Cummings, Menlo Park, CA.

    Google Scholar 

  10. Becktel, W., Schellman, J. (1987) Protein stability curves. Biopolymers 26, 1859–1877.

    Article  PubMed  CAS  Google Scholar 

  11. Privalov, P., Griko, Y., Venyaminov, S., et al. (1986) Cold denaturation of myoglobin. J Mol Biol 190, 487–498.

    Article  PubMed  CAS  Google Scholar 

  12. Wyman, J., Gill, S. J. (1990) Binding and Linkage: Functional Chemistry of Biological Macromolecules, University Science Books, Mill Valley, CA.

    Google Scholar 

  13. Biltonen, R. L., Freire, E. (1978) Thermodynamic characterization of conformational states of biological macromolecules using differential scanning calorimetry. CRC Crit Rev Biochem 5, 85–124.

    Article  PubMed  CAS  Google Scholar 

  14. Steif, C., Weber, P., Hinz, H.-J., et al. (1993) Subunit interactions provide a significant contribution to the stability of the dimeric four-α-helical bundle protein ROP. Biochemistry 32, 3867–3876.

    Article  PubMed  CAS  Google Scholar 

  15. Marky, L. A., Breslauer, K. J. (1987) Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers 26, 1601–1620.

    Article  PubMed  CAS  Google Scholar 

  16. Hermans, J., Jr. (1965) Methods for the study of reversible denaturation of proteins and interpretation of data. Methods Biochem Anal 13, 81–111.

    Article  PubMed  CAS  Google Scholar 

  17. Privalov, P. L., Makhatadze, G. I. (1990) Heat capacity of proteins. II. Partial molar heat capacity of the unfolded polypeptide chain of proteins: protein unfolding effects. J Mol Biol 213, 385–391.

    Article  PubMed  CAS  Google Scholar 

  18. McCrary, B. S., Bedell, J., Edmondson, S. P., et al. (1998) Linkage of protonation and anion binding to the folding of Sac7d. J Mol Biol 276, 203–224.

    Article  PubMed  CAS  Google Scholar 

  19. Scholtz, J. M. (1995) Conformational stability of HPr: The histidine-containing phosphocarrier protein from Bacilus subtilis. Protein Sci. 4, 35–43.

    Article  PubMed  CAS  Google Scholar 

  20. Lumry, R., Eyring, H. (1954) Conformation Changes of Proteins. J. Phys. Chem. 58, 110.

    Article  CAS  Google Scholar 

  21. Ahern, T., Klibanov, A. (1985) The mechanism of irreversible enzyme inactivation at 100°C, Science.

    Google Scholar 

  22. Bevington, P. R., Robinson, D. K. (1992) Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York, N.Y.

    Google Scholar 

  23. Johnson, M., Faunt, L. (1992) Parameter estimation by least squares methods. Methods Enzymol 210, 1–37.

    Article  PubMed  CAS  Google Scholar 

  24. Press, W., Flannery, B., Teukolsky, S., et al. (1989) Numerical Recipes: The Art of Scientific Computing (Fortran Version), Cambridge University Press, Cambridge.

    Google Scholar 

  25. Mach, H., Volkin, D. B., Burke, C. J., et al. (1995) in (Shirley, B. A., ed.), Protein Stability and Folding: Theory and Practice, Humana Press, Inc., Totowa, N.J.

    Book  Google Scholar 

  26. Royer, C. A. (1995) in (Shirley, B. A., ed.), Protein Stability and Folding: Theory and Practice, Humana Press, Inc., Totowa, N.J.

    Book  Google Scholar 

  27. Kuwajima, K. (1995) in (Shirley, B. A., ed.), Protein Stability and Folding: Theory and Practice, Humana Press, Inc., Totowa, N.J.

    Book  Google Scholar 

  28. Lopez, M. M., Chin, D. H., Baldwin, R. L., et al. (2002) The enthalpy of the alanine peptide helix measured by isothermal titration calorimetry using metal-binding to induce helix formation, Proc Natl Acad Sci USA 99, 1298–1302.

    Article  PubMed  CAS  Google Scholar 

  29. Makhatadze, G. (1998) in Current Protocols in Protein Science, John Wiley & Sons, New York.

    Google Scholar 

  30. Gordon, A., Ford, R. (1972) The Chemist's Companion: A Handbook of Practical Data, Techniques, and References, John Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shriver, J.W., Edmondson, S.P. (2009). Defining the Stability of Multimeric Proteins. In: Shriver, J. (eds) Protein Structure, Stability, and Interactions. Methods in Molecular Biology, vol 490. Humana Press. https://doi.org/10.1007/978-1-59745-367-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-367-7_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-954-3

  • Online ISBN: 978-1-59745-367-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics