Skip to main content

NMR Analysis of Native-State Protein Conformational Flexibility by Hydrogen Exchange

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 490))

Abstract

The rate of hydrogen exchange for the most protected amides of a protein is widely used to provide an estimate of global conformational stability by analyzing the exchange kinetics in the unfolded state in terms of model peptide exchange rates. The exchange behavior of the other amides of the protein which do not exchange via a global unfolding mechanism can provide insight into the smaller-scale conformational transitions that facilitate access to solvent as required for the exchange reaction. However, since the residual tertiary structure in the exchange-competent conformation can modulate the chemistry of the exchange reaction, equilibrium values estimated from normalization with model peptide rates are open to question. To overcome this limitation, the most robust approaches utilize differential analyses as a function of experimental variables such as denaturant concentration, temperature, pH, and mutational variation. Practical aspects of these various differential analysis techniques are considered with illustrations drawn from the literature.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hvidt, A., Linderstrøm-Lang, K. (1954) Exchange of hydrogen atoms in insulin with deuterium atoms in aqueous solutions, Biochim Biophys Acta 14, 574–575.

    Article  PubMed  CAS  Google Scholar 

  2. Schechter, A. N., Moravek, L., Anfinsen, C. B. (1968) Suppression of hydrogen exchange in Staphylococcal nuclease by ligands, Proc Nat Acad Sci USA 61, 1478–1485.

    Article  PubMed  CAS  Google Scholar 

  3. Busenlehner, L. S., Armstrong, R. N. (2005) Insights into enzyme structure and dynamics elucidated by amide H/D exchange mass spectrometry, Arch Biochem Biophys 433, 34–46.

    Article  PubMed  CAS  Google Scholar 

  4. Borch, J., Jorgensen, T. J. D., Roepstorff, P. (2005) Mass spectrometric analysis of protein interactions, Curr Opin Chem Biol 9, 509–516.

    Article  PubMed  CAS  Google Scholar 

  5. Scholtz, J., Robertson, A. D. (1995) Hydrogen exchange techniques, in (Shirley, B.A., ed.) Protein Stability and Folding, Vol. 40, pp. 291–312, Humana Press, Clifton, NJ.

    Chapter  Google Scholar 

  6. Roder, H. (1989) Structural characterization of protein folding intermediates by proton magnetic resonance and hydrogen exchange, Meth Enzymol 176, 446–473.

    Article  PubMed  CAS  Google Scholar 

  7. Krishna, M. M. G., Hoang, L., Lin, Y., et al. (2004) Hydrogen exchange methods to study protein folding, Methods 34, 51–64.

    Article  PubMed  CAS  Google Scholar 

  8. Konermann, L., Simmons, D. A. (2003) Protein-folding kinetics and mechanisms studied by pulse-labeling and mass spectrometry, Mass Spectr Rev 22, 1–26.

    Article  CAS  Google Scholar 

  9. Nazabal, A., Schmitter, J. M. (2006) Hydrogen–deuterium exchange analyzed by matrix-assisted laser desorption-ionization mass spectrometry and the HET-s prion model, Meth Enzymol 413, 167–181.

    Article  PubMed  CAS  Google Scholar 

  10. Kheterpal, I., Wetzel, R. (2006) Hydrogen/deuterium exchange mass spectrometry – A window into amyloid structure, Acc Chem Res 39, 584–593.

    Article  PubMed  CAS  Google Scholar 

  11. Miranker, A., Robinson, C. V., Radford, S. E., et al. (1996) Investigation of protein folding by mass spectrometry, FASEB J 10, 93–101.

    PubMed  CAS  Google Scholar 

  12. Hvidt, A., Nielsen, S. O. (1966) Hydrogen exchange in proteins, Adv Protein Chem 21, 287–386.

    Article  PubMed  CAS  Google Scholar 

  13. Englander, S. W. (1967) Hydrogen exchange, in (Fasman, G., ed.) Poly-a-amino acids, pp. 339–367. Marcel Dekker, Inc., New York.

    Google Scholar 

  14. Woodward, C. K., Rosenberg, A. (1971) Studies of hydrogen exchange in proteins. V. The correlation of ribonuclease exchange kinetics with the temperature-induced transition, J Biol Chem 246, 4105–4113.

    PubMed  CAS  Google Scholar 

  15. Englander, S. W., Kallenbach, N. R. (1984) Hydrogen exchange and structural dynamics of proteins and nucleic acids, Q Rev Biophys 16, 521–655.

    Article  Google Scholar 

  16. Woodward, C., Simon, I., Tüchsen, E. (1982) Hydrogen exchange and the dynamics of proteins, Mol Cell Biochem 48, 135–160.

    Article  PubMed  CAS  Google Scholar 

  17. Miller, D. W., Dill, K. A. (1995) A statistical mechanical model for hydrogen exchange in globular proteins, Prot Sci 4, 1860–1873.

    Article  CAS  Google Scholar 

  18. Huyghues-Despointes, B. M. P., Pace, C. N., Englander, S. W., et al. (2001) Measuring the conformational stability of a protein by hydrogen exchange, in (Murphy, K.P., ed.) Protein Structure, Stability and Folding, Vol. 168, pp. 69–92. Humana Press, Totowa, NJ.

    Chapter  Google Scholar 

  19. Arrington, C. B., Robertson, A. D. (2000) Correlated motions in native proteins from MS analysis of NH exchange: Evidence for a manifold of unfolding reactions in ovomucoid third domain, J Mol Biol 300, 221–232.

    Article  PubMed  CAS  Google Scholar 

  20. Wildes, D., Anderson, L. M., Sabogal, A., et al. (2006) Native state energetics of the Src SH2 domain: Evidence for a partially structured state in the denatured ensemble, Prot Sci 15, 1769–1779.

    Article  CAS  Google Scholar 

  21. Bowler, B. E. (2007) Thermodynamics of protein denatured states, Mol Biosystems 3, 88–99.

    Article  CAS  Google Scholar 

  22. Kim, P.S., Baldwin, R.L. (1982) Influence of charge on the rate of amide proton exchange, Biochemistry 21, 1–5.

    Article  PubMed  CAS  Google Scholar 

  23. Tüchsen, E., Woodward, C. (1985) Hydrogen kinetics of peptide amide protons at the bovine pancreatic trypsin inhibitor protein-solvent interface, J Mol Biol 185, 405–419.

    Article  PubMed  Google Scholar 

  24. Delepierre, M., Dobson, C. M., Karplus, M., et al.. (1987) Electrostatic effects and hydrogen exchange behavior in proteins. The pH dependence of exchange rates in lysozyme, J Mol Biol 197, 111–130.

    Article  PubMed  CAS  Google Scholar 

  25. Dempsey, C. E. (1988) pH Dependence of hydrogen exchange from backbone peptide amides of Melittin in methanol, Biochemistry 27, 6893–6901.

    Article  CAS  Google Scholar 

  26. Fogolari, F., Esposito, G., Vigino, P., et al. (1998) pKa shift effects on backbone amide base-catalyzed hydrogen exchange rates in peptides, J Am Chem Soc 120, 3735–3738.

    Article  CAS  Google Scholar 

  27. Eigen, M. (1964) Proton transfer, acid–base catalysis, and enzymic hydrolysis. (I) Elementary processes, Angew Chem Int Ed 3, 1–72.

    Article  Google Scholar 

  28. Molday, R. S., Kallen, R. G. (1972) Substituent effects on amide hydrogen exchange rates in aqueous solution, J Am Chem Soc 94, 6739–6745.

    Article  CAS  Google Scholar 

  29. Wang, W. H., Cheng, C. C. (1994) General base catalyzed proton exchange in amides, Bull Chem Soc Jpn 67, 1054–1057.

    Article  CAS  Google Scholar 

  30. Wang, W. H., Cheng, C. C. (1995) Erratum: general base catalyzed proton exchange in amides, Bull Chem Soc Jpn 68, 2767–2767.

    Google Scholar 

  31. Wagner, G., Wüthrich, K. (1982) Amide proton exchange and surface conformation of the basic pancreatic trypsin inhibitor in solution, J Mol Biol 160, 343–361.

    Article  PubMed  CAS  Google Scholar 

  32. Christoffersen, M., Bolvig, S., Tüchsen, E. (1996) Salt effects on the amide hydrogen exchange of bovine pancreatic trypsin inhibitor, Biochemistry 35, 2309–2315.

    Article  PubMed  CAS  Google Scholar 

  33. Hernández, G., Anderson, J.S., LeMaster, D.M. (2008) Electrostatic stabilization and general base catalysis in the active site of the human protein disulfide isomerase a domain monitored by hydrogen exchange, ChemBioChem 9, 768–778 .

    Google Scholar 

  34. LeMaster, D. M., Minnich, M., Parsons, P. J., et al. (2006) Tetrathiolate coordination of germanium(IV) in a protein active site, J Inorg Biochem 100, 1410–1412.

    Article  PubMed  CAS  Google Scholar 

  35. LeMaster, D. M., Anderson, J. S., Hernández, G. (2006) Role of native-state structure in rubredoxin native-state hydrogen exchange, Biochemistry 45, 9956–9963.

    Article  PubMed  CAS  Google Scholar 

  36. Anderson, J. S., LeMaster, D. M., Hernandez, G. (2006) Electrostatic potential energy within a protein monitored by metal charge-dependent hydrogen exchange, Biophys J 91, L93–L95.

    Article  PubMed  CAS  Google Scholar 

  37. LeMaster, D. M., Anderson, J. S., Hernández, G. (2007) Spatial distribution of dielectric shielding in the interior of Pyrococcus furiosus rubredoxin as sampled in the subnanosecond timeframe by hydrogen exchange, Biophys Chemist 129, 43–48.

    Article  CAS  Google Scholar 

  38. Wrba, A., Schweiger, A., Schultes, V., et al. (1990) Extremely thermostable D-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima, Biochemistry 29, 7584–7592.

    Article  PubMed  CAS  Google Scholar 

  39. Bonisch, H., Backmann, J., Kath, T., et al. (1996) Adenylate kinase from Sulfolobus acidocaldarius: Expression in Escherichia coli and characterization by Fourier transform infrared spectroscopy, Arch Biochem Biophys 333, 75–84.

    Article  PubMed  CAS  Google Scholar 

  40. Zavodszky, P., Kardos, J., Svingor, A., et al. (1998) Adjustment of conformational flexibility is a key event in the thermal adaptation of proteins, Proc Natl Acad Sci USA 95, 7406–7411.

    Article  PubMed  CAS  Google Scholar 

  41. Loftus, D., Gbenle, G. O., Kim, P. S., et al. (1986) Effects of denaturants on amide proton exchange rates: A test for structure in protein fragments and folding intermediates, Biochemistry 25, 1428–1436.

    Article  PubMed  CAS  Google Scholar 

  42. Itzhaki, L. S., Neira, J. L., Fersht, A. R. (1997) Hydrogen exchange in chymotrypsin inhibitor 2 probed by denaturants and temperature, J Mol Biol 270, 88–89.

    Article  Google Scholar 

  43. Pace, C. N. (1986) Determination and analysis of urea and guanidine hydrochloride denaturation curves, Meth Enzymol 131, 266–280.

    Article  PubMed  CAS  Google Scholar 

  44. Mayo, S. L., Baldwin, R. L. (1993) Guanidinium chloride induction of partial unfolding in the amide proton exchange in RNase A, Science 262, 873–876.

    Article  PubMed  CAS  Google Scholar 

  45. Loh, S. N., Rohl, C. A., Kpefhaber, T., et al. (1996) A general two-process model describes the hydrogen exchange behavior of RNase A in unfolding conditions, Proc Natl Acad Sci USA 93, 1982–1987.

    Article  PubMed  CAS  Google Scholar 

  46. Bai, Y., Sosnick, T. R., Mayne, L., et al. (1995) Protein folding intermediates: native-state hydrogen exchange, Science 269, 192–197.

    Article  PubMed  CAS  Google Scholar 

  47. Hiller, R., Zhou, Z. H., Adams, M. W. W., et al. (1997) Stability and dynamics in a hyperthermophilic protein with melting temperature close to 200 degrees C, Proc Natl Acad Sci USA 94, 11329–11332.

    Article  PubMed  CAS  Google Scholar 

  48. LeMaster, D. M., Tang, J., Hernández, G. (2004) Absence of kinetic thermal stabilization in a hyperthermophile rubredoxin indicated by 40 microsecond folding in the presence of irreversible denaturation, Proteins 57, 118–127.

    Article  PubMed  CAS  Google Scholar 

  49. Englander, J. J., Calhoun, D. B., Englander, S. W. (1979) Measurement and calibration of peptide group hydrogen–deuterium exchange by ultraviolet spectroscopy, Anal Biochem 92, 517–524.

    Article  PubMed  CAS  Google Scholar 

  50. Wraight, C. A. (2006) Chance and Design – Proton transfer in water, channels and bioenergetic proteins, Biochim Biophys Acta 1757, 886–912.

    Article  PubMed  CAS  Google Scholar 

  51. Pitzer, K. S. (1937) The heats of ionization of water, ammonium hydroxide, carbonic, phosphoric and sulfuric acids., J Am Chem Soc 59, 2365–2371.

    Article  CAS  Google Scholar 

  52. Barres, M., Redoute, J. P., Romanetti, R., et al. (1973) Calorimetry of complexes in solution, C R Acad Sci Ser C 276, 363–366.

    CAS  Google Scholar 

  53. Harned, H .S., Owen, B. B. (1950) Physical Chemistry of Electrolyte Solutions, ACS Monograph, p. 514. Reinhold Publishers, New York.

    Google Scholar 

  54. Kim, K. S., Woodward, C. (1993) Protein internal flexibility and global stability: Effect of urea on hydrogen exchange rates of bovine pancreatic trypsin inhibitor, Biochemistry 32, 9609–9613.

    Article  PubMed  CAS  Google Scholar 

  55. Richarz, R., Sehr, P., Wagner, G., et al. (1979) Kinetics of the exchange of individual amide protons in the basic pancreatic trypsin inhibitor, J Mol Biol 130, 19–30.

    Article  PubMed  CAS  Google Scholar 

  56. Woodward, C. K., Hilton, B. D. (1980) Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor, Biophys J 32, 561–575.

    Article  PubMed  CAS  Google Scholar 

  57. Hitchens, T. K., Bryant, R. G. (1998) Pressure dependence of amide hydrogen–deuterium exchange rates for individual sites in T4 lysozyme, Biochemistry 37, 5878–5887.

    Article  PubMed  CAS  Google Scholar 

  58. Dixon, M. E., Hitchens, T. K., Bryant, R. G. (2000) Comparison of pressure and temperature activation parameters for amide hydrogen exchange in T4 lysozyme, Biochemistry 39, 248–254.

    Article  PubMed  CAS  Google Scholar 

  59. Watenpaugh, K. D., Sieker, L. C., Jensen, L. H. (1980) Crystallographic refinement of rubredoxin at 1.2 Å resolution, J Mol Biol 138, 615–633.

    Article  PubMed  CAS  Google Scholar 

  60. Hernández, G., LeMaster, D. M. (2001) Reduced temperature dependence of collective conformational opening in a hyperthermophile rubredoxin, Biochemistry 40, 14384–14391.

    Article  PubMed  Google Scholar 

  61. Bai, Y. W., Milne, J. S., Mayne, L., et al. (1993) Primary structure effects on peptide group hydrogen-exchange, Proteins: Struct, Funct, Genet 17, 75–86.

    Article  CAS  Google Scholar 

  62. Arrington, C. B., Robertson, A. D. (1997) Microsecond protein folding kinetics from native-state hydrogen exchange, Biochemistry 36, 8686–8691.

    Article  PubMed  CAS  Google Scholar 

  63. Sivaraman, T., Arrington, C. B., Robertson, A. D. (2001) Kinetics of unfolding and folding from amide hydrogen exchange in native ubiquitin, Nat Struct Biol 8, 331–333.

    Article  PubMed  CAS  Google Scholar 

  64. Li, H., Dunn, J. J., Luft, B. J., Lawson, C. L. (1997) Crystal structure of Lyme disease antigen outer surface protein A complexed with an Fab, Proc Natl Acad Sci USA 94, 3584–3589.

    Article  PubMed  CAS  Google Scholar 

  65. Yan, S., Kennedy, S. D., Koide, S. (2002) Thermodynamic and kinetic exploration of the energy landscape of Borrelia burgdorferi OspA by native-state hydrogen exchange, J Mol Biol 323, 363–375.

    Article  PubMed  CAS  Google Scholar 

  66. Washabaugh, M. W., Jencks, W. P. (1989) Thiazolium C(2)-Proton exchange: Isotope effects, internal return, and a small intrinsic barrier, J Am Chem Soc 111, 683–692.

    Article  CAS  Google Scholar 

  67. Costentin, C., Saveant, J. M. (2004) Why are proton transfers at carbon slow? Self-exchange Reactions, J Am Chem Soc 126, 14787–14795.

    Article  PubMed  CAS  Google Scholar 

  68. Amyes, T. L., Diver, S. T., Richard, J. P., et al. (2004) Formation and stability of N-heterocyclic carbenes in water: The carbon acid pKa of imidazolium cations in aqueous solution, J Am Chem Soc 126, 4366–4374.

    Article  PubMed  CAS  Google Scholar 

  69. LeMaster, D. M., Anderson, J. S., Hernández, G. (2007) Normal carbon acid referencing for protein amide hydrogen exchange, Magn Reson Chem 45, in press.

    Google Scholar 

  70. Noszal, B., Rabenstein, D. L. (1991) Nitrogen-protonation microequilibria and C(2)-deprotonation microkinetics of histidine, histamine, and related compounds, J Phys Chem 95, 4761–4765.

    Article  CAS  Google Scholar 

  71. Arrington, C. B., Robertson, A. D. (2000) Microsecond to minute dynamics revealed by EX1-type hydrogen exchange at nearly every backbone hydrogen bond in a native protein, J Mol Biol 296, 1307–1317.

    Article  PubMed  CAS  Google Scholar 

  72. Hwang, T. L., Mori, S., Shaka, A. J., et al. (1997) Application of phase-modulated CLEAN Chemical EXchange Spectroscopy (CLEANEX-PM) to detect water-protein proton exchange and intermolecular NOEs, J Am Chem Soc 119, 6203–6204.

    Article  CAS  Google Scholar 

  73. Hwang, T. L., vanZijl, P. C. M., Mori, S. (1998) Accurate quantitation of water-amide proton exchange rates using the phase-modulated CLEAN chemical EXchange (CLEANEX-PM) approach with a Fast-HSQC (FHSQC) detection scheme, J Biomol NMR 11, 221–226.

    Article  PubMed  CAS  Google Scholar 

  74. Hernández, G., Jenney, F. E., Adams, M.W.W., and LeMaster, D.M. (2000) Millisecond time scale conformational flexibility in a hyperthermophile protein at ambient temperature, Proc Natl Acad Sci USA 97, 3166–3170.

    Article  PubMed  Google Scholar 

  75. Mori, S., Abeygunawardana, C., Johnson, M. O., et al. (1995) Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation, J Magn Reson B 108, 94–98.

    Article  PubMed  CAS  Google Scholar 

  76. Hernández, G., LeMaster, D. M. (2003) Relaxation compensation in chemical exchange measurements for the quantitation of amide hydrogen exchange in larger proteins, Magn Reson Chem 41, 699–702.

    Article  Google Scholar 

  77. Dalvit, C., Hommel, U. (1995) Sensitivity-improved detection of protein hydration and its extension to the assignment of fast-exchanging resonances, J Magn Reson B 109, 334–338.

    Article  CAS  Google Scholar 

  78. LeMaster, D. M., Tang, J., Paredes, D. I., et al. (2005) Enhanced thermal stability achieved without increased conformational rigidity at physiological temperatures: Spatial propagation of differential flexibility in rubredoxin hybrids, Proteins 61, 608–616.

    Article  PubMed  CAS  Google Scholar 

  79. LeMaster, D. M., Tang, J., Paredes, D. I., et al. (2005) Contribution of the multi-turn segment in the reversible thermal stability of hyperthermophile rubredoxin: NMR thermal chemical exchange analysis of sequence hybrids, Biophys Chem 116, 57–65.

    Article  PubMed  CAS  Google Scholar 

  80. Hernández, G., LeMaster, D.M. (2005) Hybrid native partitioning of interactions among nonconserved residues in chimeric proteins, Proteins 60, 723–731.

    Article  PubMed  Google Scholar 

  81. LeMaster, D. M., Hernández, G. (2005) Additivity in both thermodynamic stability and thermal transition temperature for rubredoxin chimeras via hybrid native partitioning, Structure 13, 1153–1163.

    Article  PubMed  CAS  Google Scholar 

  82. LeMaster, D. M., Hernández, G. (2006) Additivity of differential conformational dynamics in hyperthermophile/mesophile rubredoxin chimeras as monitored by hydrogen exchange, ChemBioChem 7, 1886–1889.

    Article  PubMed  CAS  Google Scholar 

  83. Connelly, G. P., Bai, Y. W., Jeng, M. F., et al. (1993) Isotope effects in peptide group hydrogen-exchange, Proteins 17, 87–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hernández, G., LeMaster, D.M. (2009). NMR Analysis of Native-State Protein Conformational Flexibility by Hydrogen Exchange. In: Shriver, J. (eds) Protein Structure, Stability, and Interactions. Methods in Molecular Biology, vol 490. Humana Press. https://doi.org/10.1007/978-1-59745-367-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-367-7_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-954-3

  • Online ISBN: 978-1-59745-367-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics