Skip to main content

Defining the Role of Salt Bridges in Protein Stability

  • Protocol
  • First Online:
Protein Structure, Stability, and Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 490))

Abstract

Although the energetic balance of forces stabilizing proteins has been established qualitatively over the last decades, quantification of the energetic contribution of particular interactions still poses serious problems. The reasons are the strong cooperativity and the interdependence of noncovalent interactions. Salt bridges are a typical example. One expects that ionizable side chains frequently form ion pairs in innumerable crystal structures. Since electrostatic attraction between opposite charges is strong per se, salt bridges can intuitively be regarded as an important factor stabilizing the native structure. Is that really so? In this chapter we critically reassess the available methods to delineate the role of electrostatic interactions and salt bridges to protein stability, and discuss the progress and the obstacles in this endeavor. The basic problem is that formation of salt bridges depends on the ionization properties of the participating groups, which is significantly influenced by the protein environment. Furthermore, salt bridges experience thermal fluctuations, continuously break and re-form, and their lifespan in solution is governed by the flexibility of the protein. Finally, electrostatic interactions are long-range and might be significant in the unfolded state, thus seriously influencing the energetic profile. Elimination of salt bridges by protonation/deprotonation at extreme pH or by mutation provides only rough energetic estimates, since there is no way to account for the nonadditive response of the protein moiety. From what we know so far, the strength of electrostatic interactions is strongly context-dependent, yet it is unlikely that salt bridges are dominant factors governing protein stability. Nevertheless, proteins from thermophiles and hyperthermophiles exhibit more, and frequently networked, salt bridges than proteins from the mesophilic counterparts. Increasing the thermal (not the thermodynamic) stability of proteins by optimization of charge–charge interactions is a good example for an evolutionary solution utilizing physical factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Linderstrøm-Lang, K. (1924) On the Ionization of Proteins. C R Trav Lab Carlsberg 15, 1–29.

    Google Scholar 

  2. Pauling, L., Corey, R.B., Branson, H.R. (1951) The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci USA 37, 205–211.

    PubMed  CAS  Google Scholar 

  3. Pauling, L., Mirsky, A.E. (1936) On the structure of native, denatured, and coagulated Proteins. Proc Natl Acad Sci USA 22, 439–447.

    PubMed  Google Scholar 

  4. Kauzmann, W. (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14, 1–63.

    PubMed  CAS  Google Scholar 

  5. Rose, G.D., Fleming, P.J., Banavar, J.R., et al. (2006) A backbone-based theory of protein folding. Proc Natl Acad Sci USA 103, 16623–16633.

    PubMed  CAS  Google Scholar 

  6. Yang, A.-S., Honig, B. (1993) On the pH dependence of protein stability. J Mol Biol 231, 459–474.

    PubMed  CAS  Google Scholar 

  7. Kundrotas, P., Karshikoff, A. (2004) Electrostatic interactions in unfolded proteins. Implication for protein stability, in (Richard, R., ed.) Current Topics in Peptide & Protein Research. Research Trends, Poojapura. pp. 21–35.

    Google Scholar 

  8. Nozaki, Y., Tanford, C. (1967) Examination of titration behaviour. Meth Enzymol 11, 715–734.

    CAS  Google Scholar 

  9. Matthew, J.B. (1985) Electrostatic effects in proteins. Annu Rev Biophys Biomol Struct 14, 387–417.

    CAS  Google Scholar 

  10. Lide, D.R. (1999) CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton.

    Google Scholar 

  11. Tanokura, M. (1983) 1H-NMR study on the tautomerism of the imidasole ring of histidine residues. 1. Microscopic pK values and molar ratios of tautomerism in histidine-containing peptides. Biochim Biophys Acta 742, 576–585.

    PubMed  CAS  Google Scholar 

  12. Demchuk, E., Wade, R.C. (1996) Improving the continuum dielectric approach to calculating pKas of ionizable groups in proteins. J Phys Chem 100, 17373–17387.

    CAS  Google Scholar 

  13. Raquet, X., Lounnas, V., Lamotte-Brasseur, J., et al. (1997) pKa calculations for class A α-lactamases: Methodological and mechanistic implications. Biophys J 73, 2416–2426.

    PubMed  CAS  Google Scholar 

  14. Ullmann, G.M., Knapp, E.W. (1999) Electrostatic models for computing protonation and redox equilibria in proteins. Eur Biophys J 28, 533–551.

    PubMed  CAS  Google Scholar 

  15. Fogolari, F., Brigo, A., Molinari, H. (2002) The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology. J Mol Recognit 15, 377–392.

    PubMed  CAS  Google Scholar 

  16. Bashford, D., Karplus, M. (1990) pKas of ionizable groups in proteins: Atomic detail from a continuum electrostatic model. Biochemistry 29, 10219–10225.

    PubMed  CAS  Google Scholar 

  17. Spassov, V.Z., Bashford, D. (1999) Multiple-site ligand binding to flexible macromolecules: Separation of global and local conformational change and an iterative mobile clustering approach. J Comput Chem 20, 1091–1111.

    CAS  Google Scholar 

  18. Koumanov, A., Rüterjans, H., Karshikoff, A. (2002) Continuum electrostatic analysis of irregular ionization and proton allocation in proteins. Proteins 46, 85–96.

    PubMed  CAS  Google Scholar 

  19. Koumanov, A., Benach, J., Atrian, S., et al. (2003) The catalytic mechanism of Drosophila alcohol dehydrogenase: Evidence for a proton relay modulated by the coupled ionization of the active site lysine/tyrosine pair and a NAD+ ribose OH switch. Proteins 51, 289–298.

    PubMed  CAS  Google Scholar 

  20. Joshi, M., Hedberg, A., McIntosh, L. (1997) Complete measurement of the pK(a) values of the carboxyl and imidazole groups in Bacillus circulans xylanase. Protein Sci 6, 2667–2670.

    PubMed  CAS  Google Scholar 

  21. Warshel, A., Russell, S.T., Churg, A.K. (1984) Macroscopic models for studies of electrostatic interactions in proteins: Limitations and applicability. Proc Natl Acad Sci USA 81, 4785–4789.

    PubMed  CAS  Google Scholar 

  22. Warshel, A., Russell, S.T. (1984) Calculations of electrostatic interactions in biological systems and in solutions. Q Rev Biophys 17, 283–422.

    PubMed  CAS  Google Scholar 

  23. Koumanov, A., Karshikoff, A., Friis, E.P., et al. (2001) Conformational averaging in pK calculations. Improvement and limitations in prediction of ionization properties of proteins. J Phys Chem B 105, 9339–9344.

    CAS  Google Scholar 

  24. Spassov, V.Z., Ladenstein, R., Karshikoff, A. (1997) Optimization of the electrostatic interactions between ionized groups and peptide dipoles in proteins. Protein Sci 6, 1190–1196.

    PubMed  CAS  Google Scholar 

  25. Koumanov, A., Spitzner, N., Rüterjans, H. et al. (2001) Ionisation properties of titratable groups in ribonuclease T1. II. Electrostatic analysis. Eur Biophys J 30, 198–206.

    PubMed  CAS  Google Scholar 

  26. Antosiewicz, J., McCammon, J.A., Gilson, M.K. (1994) Prediction of pH-dependent properties of proteins. J Mol Biol 238, 415–436.

    PubMed  CAS  Google Scholar 

  27. Schaefer, M., Sommer, M., Karplus, M. (1997) pH-dependence of protein stability: Absolute electrostatic free energy difference between conformations. J Phys Chem B 101, 1663–1683.

    CAS  Google Scholar 

  28. van Vlijmen, H.W.T., Schaefer, M., Karplus, M. (1998) Improving the accuracy of protein pKa calculations – conformational averaging versus the average structure. Proteins 33, 145–158.

    PubMed  Google Scholar 

  29. Beroza, P., Case, D.A. (1998) Calculations of proton-binding thermodynamics in proteins. Meth Enzymol 295, 170–189.

    PubMed  CAS  Google Scholar 

  30. Bashford, D., Case, D.A., Dalvit, C., et al. (1993) Electrostatic calculations of side-chain pKa values in myoglobin and comparison with NMR data for histidine. Biochemistry 32, 8045–8056.

    PubMed  CAS  Google Scholar 

  31. You, T.J., Bashford, D. (1995) Conformation and hydrogen ion titration of proteins: A continuum electrostatic model with conformational flexibility. Biophys J 69, 1721–1733.

    PubMed  CAS  Google Scholar 

  32. Beroza, P., Case, D.A. (1996) Including side chain flexibility in continuum electrostatic calculations of protein titration. J Phys Chem 100, 20156–20163.

    CAS  Google Scholar 

  33. Alexov, E., Gunner, M.R. (1997) Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties. Biophys J 72, 2075–2093.

    PubMed  CAS  Google Scholar 

  34. Georgescu, R.E., Alexov, E., Gunner, M.R. (2002) Combining conformational flexibility and continuum electrostatics for calculating pKas in proteins. Biophys J 83, 1731–1748.

    PubMed  CAS  Google Scholar 

  35. Alexov, E. (2003) Role of the protein side-chain fluctuations on the strength of pair-wise electrostatic interactions: comparing experimental with computed pKas. Proteins 50, 94–103.

    PubMed  CAS  Google Scholar 

  36. Antosiewicz, J., McCammon, J.A., Gilson, M.K. (1996) The determination of pKas in proteins. Biochemistry 35, 7819–7833.

    PubMed  CAS  Google Scholar 

  37. Khare, D., Alexander, P., Antosiewich, J., et al. (1997) pKa measurements from nuclear magnetic resonance for B1 and B2 immunoglobin G-binding domain of protein G: comparison with calculated values for nuclear magnetic resonance and X-ray structures. Biochemistry 36, 3580–3589.

    PubMed  CAS  Google Scholar 

  38. Alexov, E.G., Gunner, M.R. (1999) Calculated protein and protonmotion coupled to electron transfer: Electron transfer from QA-QB to QB in bacterial photosynthetic reaction centers. Biochemistry 38, 8253–8270.

    PubMed  CAS  Google Scholar 

  39. Bashford, D., Gerwert, K. (1992) Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin. J Mol Biol 224, 473–486.

    PubMed  CAS  Google Scholar 

  40. Yang, A.-S., Honig, B. (1994) Structural origin of pH and ionic strength effects on protein stability. Acid denaturation of sperm whale apomyoglobin. J Mol Biol 237, 602–614.

    PubMed  CAS  Google Scholar 

  41. Gorfe, A.A., Ferrara, P., Caflisch, A., et al. (2002) Calculation of protein ionization equilibria with conformational sampling pKa of a model leucine zipper, GCN4 and barnase. Proteins 46, 41–60.

    PubMed  CAS  Google Scholar 

  42. Huang, X.Q., Zhou, H.X. (2006) Similarity and difference in the unfolding of thermophilic and mesophilic cold shock proteins studied by molecular dynamics. Biophys J 91, 2451–2463.

    PubMed  CAS  Google Scholar 

  43. Wlodek, S.T., Antosiewicz, J., McCammon, J.A. (1997) Prediction of titration properties of structures of a protein derived from molecular dynamics trajectories. Protein Sci 6, 373–382.

    PubMed  CAS  Google Scholar 

  44. Pace, C.N., Alston, R.W., Shaw, K.L. (2000) Charge–charge interactions influence the denatured state ensemble and contribute to protein stability. Protein Sci 9, 1395–1398.

    PubMed  CAS  Google Scholar 

  45. Oliveberg, M., Arcus, V.L., Fersht, A.R. (1995) pKa values of carboxyl groups in the native and denatured state of barnase: The pKa values of the denatured state are on 0.4 units lower than those of model compounds. Biochemistry 34, 9424–9433.

    PubMed  CAS  Google Scholar 

  46. Swint-Kruse, L., Robertson, A.D. (1995) Hydrogen bonds and the pH dependence of ovomucoid third domain stability. Biochemistry 34, 4724–4732.

    PubMed  CAS  Google Scholar 

  47. Whitten, S.T., Garcia-Moreno, B. (2000) pH dependence of stability of staphylococcal nuclease: Evidence of substantial electrostatic interactions in the denatured state. Biochemistry 39, 14292–14304.

    PubMed  CAS  Google Scholar 

  48. Warwicker, J. (1999) Simplified methods for pK(a) and acid pH-dependent stability estimation in proteins: Removing dielectric and counterion boundaries. Protein Sci 8, 418–425.

    PubMed  CAS  Google Scholar 

  49. Elcock, A.H. (1999) Realistic modeling of the denatured states of proteins allows accurate calculations of the pH dependence of protein stability. J Mol Biol 294, 1051–1062.

    PubMed  CAS  Google Scholar 

  50. Zhou, H.-X. (2002) A Gaussian-chain model for treating residual charge–charge interactions in the unfolded state of proteins. Proc Natl Acad Sci USA 99, 3569–3574.

    PubMed  CAS  Google Scholar 

  51. Zhou, H.-X. (2002) Residual electrostatic effects in the unfolded state of the N-terminal domain of L9 can be attributed to nonspecific nonlocal charge–charge interactions. Biochemistry 41, 6533–6538.

    PubMed  CAS  Google Scholar 

  52. Zhou, H.X. (2002) Dimensions of denatured protein chains from hydrodynamic data. J Phys Chem B 106, 5769–5775.

    CAS  Google Scholar 

  53. Zhou, H.-X. (2003) Direct test of the Gaussian-chain model for treating residual charge–charge interactions in the unfolded state of proteins. J Am Chem Soc 125, 2060–2061.

    PubMed  CAS  Google Scholar 

  54. Kundrotas, P.J., Karshikoff, A. (2002) Model for calculations of electrostatic interactions in unfolded proteins. Phys Rev E 65, Art No 011901.

    Google Scholar 

  55. Tollinger, M., Forman-Kay, J.D., Kay, L.E. (2002) Measurement of side-chain carboxyl pKa values of glutamate and aspartate residues in an unfolded protein by multinuclear NMR spectroscopy. J Am Chem Soc 124, 5714–5717.

    PubMed  CAS  Google Scholar 

  56. Tollinger, M., Crowhurst, K.A., Kay, L.E., et al. (2003) Site-specific contributions to the pH dependence of protein stability. Proc Natl Acad Sci USA 100, 4545–4550.

    PubMed  CAS  Google Scholar 

  57. Cho, J.H., Raleigh, D.P. (2006) Electrostatic interactions in the denatured state and in the transition state for protein folding: Effects of denatured state interactions on the analysis of transition state structure. J Mol Biol 359, 1437–1446.

    PubMed  CAS  Google Scholar 

  58. Kundrotas, P.J., Karshikoff, A. (2004) Charge sequence coding in statistical modeling of unfolded proteins. Biochim Biophys Acta 1702, 1–8.

    PubMed  CAS  Google Scholar 

  59. Pollack, L., Tate, M.W., Darnton, N.C., et al. (1999) Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle X-ray scattering. Proc Natl Acad Sci USA 96, 10115–10115.

    PubMed  CAS  Google Scholar 

  60. Kamatari, Y.O., Konno, T., Kataoka, M., et al. (1996) The methanol-induced globular and expanded denatured states of cytochrome c: A study by CD fluorescence, NMR and small-angle X-ray scattering. J Mol Biol 512, 512–523.

    Google Scholar 

  61. Segel, D.J., Fink, A.L., Hodgson, K.O. et al. (1998) Protein denaturation: A small-angle X-ray scattering study of the ensemble of unfolded states of cytochrome c Biochemistry 37, 12443–12451.

    PubMed  CAS  Google Scholar 

  62. Flanagan, J.M., Kataoka, M., Shortle, D., et al. (1992) Truncated staphylococcal nuclease is compact but disordered. Proc Natl Acad Sci USA 89, 748–752.

    PubMed  CAS  Google Scholar 

  63. Panick, G., Malessa, R., Winter, R., et al. (1998) Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy. J Mol Biol 275, 389–402.

    PubMed  CAS  Google Scholar 

  64. IbarraMolero, B., SanchezRuiz, J.M. (1997) Are there equilibrium intermediate states in the urea-induced unfolding of hen egg-white lysozyme? Biochemistry 36, 9616–9624.

    CAS  Google Scholar 

  65. Hoshino, M., Hagihara, Y., Hamada, D., et al. (1997) Trifluoroethanol-induced conformational transition of hen egg-white lysozyme studied by small-angle X-ray scattering. FEBS Lett 416, 72–76.

    PubMed  CAS  Google Scholar 

  66. Kundrotas, P.J., Karshikoff, A. (2003) Effects of electrostatic interactions on dimensions of unfolded polypeptide chains with various charge distributions: Monte Carlo study. J Chem Phys 119, 3574–3581.

    CAS  Google Scholar 

  67. Kundrotas, P.J., Karshikoff, A. (2002) Modeling of denatured state for calculations of electrostatic contribution to protein stability. Protein Sci 11, 1681–1686.

    PubMed  CAS  Google Scholar 

  68. Phelan, P., Gorfe, A.A., Jelesarov, I., et al. (2002) Salt bridges destabilize a leucine zipper designed for maximized ion pairing between helices. Biochemistry 41, 2998–3008.

    PubMed  CAS  Google Scholar 

  69. Ibarra-Molero, B., Loladze, V.V., Makhatadze, G.I. et al. (1999) Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge–charge interactions to protein stability. Biochemistry 38, 8138–8149.

    PubMed  CAS  Google Scholar 

  70. Bolen, D.W., Yang, M. (2000) Effects of guanidine hydrochloride on the proton inventory of proteins: Implications on interpretations of protein stability. Biochemistry 39, 15208–15216.

    PubMed  CAS  Google Scholar 

  71. Marklay, J.L. (1975) Observation of histidine residues in proteins by means of nuclear magnetic resonance spectroscopy. Acc Chem Res 8, 70–80.

    Google Scholar 

  72. Shrager, R.I., Barker, P.B., Freeman, R. (1972) Computer-optimized decoupling scheme for wideband application and low-level operation. J Magn Reson 11, 541–547.

    CAS  Google Scholar 

  73. Blomberg, F., Mauer, W., Rüterjans, H. (1977) Nuclear magnetic resonance investigation of 15N-labeled histidine in aqueous solution. J Am Chem Soc 39, 8149–8159.

    Google Scholar 

  74. Yang, A.-S., Gunner, M.R., Sampogna, R., et al. (1993) On the calculation of pKas in proteins. Proteins 15, 252–265.

    PubMed  CAS  Google Scholar 

  75. Koumanov, A., Ladenstein, R., Karshikoff, A. (2001) Electrostatic interactions in proteins: Contribution to structure–function relationships and stability, in (Pandalai, R., ed.) Recent Research Developments in Protein Engineering. Research Signpost, Trivandrum. pp. 123–148.

    Google Scholar 

  76. Horovitz, A., Serrano, L., Avron, B., et al. (1990) Strength and cooperativity of contributions of surface salt bridges to protein stability. J Mol Biol 216, 1031–1044.

    PubMed  CAS  Google Scholar 

  77. Xue, W.F., Szczepankiewicz, O., Bajer, M.C., et al. (2006) Intra- versus intermolecular interactions in monellin: Contribution of surface charges to protein assembly. J Mol Biol 358, 1244–1255.

    PubMed  CAS  Google Scholar 

  78. Ren, B., Tibbelin, G., Pascale, D., et al. (1998) A protein disulfide oxidoreductase from the archaeon Pyrococcus furiosus contains two thioredoxin fold units. Nat Struct Biol 5, 602–611.

    PubMed  CAS  Google Scholar 

  79. Lyu, P.C.C., Gans, P.J., Kallenbach, N.R. (1992) Energetic contribution of solvent-exposed ion-pairs to alpha-helix structure. J Mol Biol 223, 343–350.

    PubMed  CAS  Google Scholar 

  80. Anderson, D.E., Becktel, W.J., Dahlquist, F.W. (1990) pH-Induced denaturation of proteins: a single salt bridge contributes 3–5 kcal/mol to the free energy of folding of T4 lysozyme. Biochemistry 29, 2403–22408.

    Google Scholar 

  81. Spassov, V.Z., Atanasov, B.P. (1994) Spatial optimization of electrostatic interactions between the ionized groups in globular proteins. Proteins 19, 222–229.

    PubMed  CAS  Google Scholar 

  82. Spassov, V.Z., Karshikoff, A.D., Ladenstein, R. (1994) The optimisation of the electrostatic interactions in proteins of different functional and folding type. Protein Sci 3, 1556–1569.

    PubMed  CAS  Google Scholar 

  83. Caflisch, A. and M. Karplus (1995) Acid and thermal denaturation of barnase investigated by molecular dynamics simulation. J Mol Biol 252, 627–708.

    Google Scholar 

  84. Sheldahl, C., Harvey, S.C. (1999) Molecular dynamics on a model for nascent high-density lipoprotein: Role of salt bridges. Biophys J 76, 1190–1198.

    PubMed  CAS  Google Scholar 

  85. Gruia, A.D., Fischer, S., Smith, J.C. (2004) Kinetics of breaking a salt-bridge critical in protein unfolding. Chem Phys Lett 385, 337–340.

    CAS  Google Scholar 

  86. Bjelic, S., Wieninger, S., Jelesarov, I., et al. (2008) Electrostatic contribution to the thermodynamic and kinetic stability of the homotrimeric coiled coil Lpp-56: A computational study. Proteins 70, 810–822.

    PubMed  CAS  Google Scholar 

  87. Shu, W., Liu, J., Ji, H., et al. (2000) Core structure of the outer membrane lipoprotein from Escherichia coli at 1.9 Å resolution. J Mol Biol 299, 1101–1112.

    PubMed  CAS  Google Scholar 

  88. Tanaka, T., Sawano, M., Ogasahara, K., et al. (2006) Hyper-thermostability of CutA1 protein, with a denaturation temperature of nearly 150°C. FEBS Lett 580, 4224–4230.

    PubMed  CAS  Google Scholar 

  89. Waldburger, C.D., Schildbach, J.F., Sauer, R.T. (1995) Are buried salt bridges important for protein stability and conformational specificity? Struct Biol 2, 122–128.

    CAS  Google Scholar 

  90. Magyar, C., Szilagyi, A., Zavodszky, P. (1996) Relationship between thermal stability and 3-D structure in a homology model of 3-isopropylmalate dehydrogenase from Escherichia coli. Protein Eng 9, 663–670.

    PubMed  CAS  Google Scholar 

  91. Karlsson, E.N., Crennell, S.J., Higgins, C., et al. (2003) Citrate synthase from Thermus aquaticus: a thermostable bacterial enzyme with a five membered inter-subunit ionic network. Extremophiles 7, 9–16.

    Google Scholar 

  92. Karlstrom, M., Steen, I.H., Madern, D., et al. (2006) The crystal structure of a hyperthermostable subfamily II isocitrate dehydrogenase from Thermotoga maritima. FEBS J 273, 2851–2868.

    PubMed  Google Scholar 

  93. Sciacca, M.F.M., Milardi, D., Pappalardo, M., et al. (2006) Role of electrostatics in the thermal stability of ubiquitin – A combined DSC and MM study. J Therm Anal Calor 86, 311–314.

    CAS  Google Scholar 

  94. Robinson-Rechavi, M., Alibes, A., Godzik, A. (2006) Contribution of electrostatic interactions, compactness and quaternary structure to protein thermostability: Lessons from structural genomics of Thermotoga maritima. J Mol Biol 356, 547–557.

    PubMed  CAS  Google Scholar 

  95. Bell, G.S., Russell, R.J.M., Connaris, H., et al. (2002) Stepwise adaptations of citrate synthase to survival at life’s extremes – From psychrophile to hyperthermophile. Biochemistry 269, 6250–6260.

    CAS  Google Scholar 

  96. Spassov, V.Z., Karshikoff, A.D., Ladenstein, R. (1995) The optimization of protein–solvent interactions. Thermostability and the role of hydrophobic and electrostatic interactions. Protein Sci 4, 1516–1527.

    PubMed  CAS  Google Scholar 

  97. Berezovsky, I.N., Chen, W.W., Choi, P.J., et al. (2005) Entropic stabilization of proteins and its proteomic consequences. PLoS Comput Biol 1, 322–332.

    CAS  Google Scholar 

  98. Lee, D.Y., Kim, K.A., Yu, Y.G., et al. (2004) Substitution of aspartic acid with glutamic acid increases the unfolding transition temperature of a protein. Biochem Biophys Res Commun 320, 900–906.

    PubMed  CAS  Google Scholar 

  99. Greaves, R.B., Warwicker, J. (2007) BMC Struct Biol 7, 18.

    PubMed  Google Scholar 

  100. Elcock, A.H. (1998) The stability of salt bridges at high temperatures – implications for hyperthermophilic proteins. J Mol Biol 284, 489–502.

    PubMed  CAS  Google Scholar 

  101. Martin, A., Sieber, V., Schmid, F.X. (2001) In vitro selection of highly stabilized protein variants with optimized surface. J Mol Biol 309, 717–726.

    PubMed  CAS  Google Scholar 

  102. Chan, M.K., Mukund, S., Kletzin, A., et al. (1995) Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase. Science 267, 1463–1469.

    PubMed  CAS  Google Scholar 

  103. Knapp, S., de Vos, W.M., Rice, D., et al. (1997) Crystal structure of glutamate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima at 2.5 Å resolution. J Mol Biol 267, 916–932.

    PubMed  CAS  Google Scholar 

  104. Korndörfer, I., Steipe, B., Huber, R., et al. (1997) The crystal structure of holo-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima at 2.5 Å resolution. J Mol Biol 246, 511–521.

    Google Scholar 

  105. Yip, K.S.P., Britton, K.L., Stillman, T.J., et al. (1998) Insights into the molecular basis of thermal stability from the analysis of ion-pair networks in the glutamate dehydrogenase family. Eur J Biochem 255, 336–346.

    PubMed  CAS  Google Scholar 

  106. Danson, M.J., Hough, D.W., Russell, R.J.M., et al. (1996) Enzyme thermostability and thermoactivity. Protein Eng 9, 629–630.

    PubMed  CAS  Google Scholar 

  107. Ishikawa, K., Okumura, M., Katayanagi, K., et al. (1993) Crystal structure of ribonuclease H from Thermus thermophilus HB8 refined at 2.8 Å resolution. J Mol Biol 230, 529–542.

    PubMed  CAS  Google Scholar 

  108. Henning, M., Sterner, R., Kirschner, K., et al. (1997) Crystal structure ar 2.0 Å resolution of phosphoribosil anthranilate isomerase from the hyperthermophile Thermotoga maritima: Possible determinants of protein stability. Biochemistry 36, 6009–6016.

    Google Scholar 

  109. Lebbink, J.H.G., Consalvi, V., Chiaraluce, R., et al. (2002) Structural and thermodynamic studies on a salt-bridge triad in the NADP-binding domain of glutamate dehydrogenase from Thermotoga maritima: cooperativity and electrostatic contribution to stability. Biochemistry 41, 15524–15535.

    PubMed  CAS  Google Scholar 

  110. Horovitz, A., Fersht, A.R. (1990) Strategy for analysing the co-operativity of intramolecular interactions in peptides and proteins. J Mol Biol 214, 613–617.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in author’s own laboratories has been supported in part by the Swiss National Science Foundation (IJ) and by grant BIO4CT970129 of IV Biotechnology Program of the European Community (AK).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jelesarov, I., Karshikoff, A. (2009). Defining the Role of Salt Bridges in Protein Stability. In: Shriver, J. (eds) Protein Structure, Stability, and Interactions. Methods in Molecular Biology, vol 490. Humana Press. https://doi.org/10.1007/978-1-59745-367-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-367-7_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-954-3

  • Online ISBN: 978-1-59745-367-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics