Skip to main content

Saccharomyces cerevisiae as a Model Organism to Study Mitochondrial Biology

General Considerations and Basic Procedures

  • Protocol
Mitochondria

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 372))

Abstract

Budding yeast Saccharomyces cerevisiae is widely used to study mitochondrial biogenesis and function. We review some basic properties that make yeast an ideal model organism to investigate various aspects of mitochondrial biology. We discuss genetic features of commonly used yeast strains that are important for mitochondrial studies. Furthermore, this chapter provides protocols describing yeast culture conditions and procedures for isolation and purification of mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sherman, F. (1991) Getting started with yeast. Methods Enzymol. 194, 3–21.

    Article  CAS  PubMed  Google Scholar 

  2. Goffeau, A., Barrell, B. G., Bussey, H., et al. (1996) Life with 6000 genes. Science 274, 546–552.

    Article  CAS  PubMed  Google Scholar 

  3. Giaever, G., Chu, A. M., Ni, L., et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.

    Article  CAS  PubMed  Google Scholar 

  4. Huh, W. K., Falvo, J. V., Gerke, L. C., et al. (2003) Global analysis of protein localization in budding yeast. Nature 425, 686–691.

    Article  CAS  PubMed  Google Scholar 

  5. Ghaemmaghami, S., Huh, W. K., Bower, K., et al. (2003) Global analysis of protein expression in yeast. Nature 425, 737–741.

    Article  CAS  PubMed  Google Scholar 

  6. Mnaimneh, S., Davierwala, A. P., Haynes, J., et al. (2004) Exploration of essential gene functions via titratable promoter alleles. Cell 118, 31–44.

    Article  CAS  PubMed  Google Scholar 

  7. Martin, A.C. and Drubin, D. G. (2003) Impact of genome-wide functional analyses on cell biology research. Curr. Opin. Cell Biol. 15, 6–13.

    Article  CAS  PubMed  Google Scholar 

  8. Christie, K. R., Weng, S., Balakrishnan, R., et al. (2004) Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms. Nucleic Acids Res. 32, D311–D314.

    Article  CAS  PubMed  Google Scholar 

  9. Güldener, U., Münsterkötter, M., Kastenmüller, G., et al. (2005) CYGD: the Comprehensive Yeast Genome Database. Nucleic Acids Res. 33, D364–D368.

    Article  PubMed  Google Scholar 

  10. Gancedo, J.M. (1998) Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62, 334–361.

    CAS  PubMed  Google Scholar 

  11. Stevens, B. (1981) Mitochondrial structure, in The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance (Strathern, E.W., Jones, E.W., and Broach, J.R., eds.), Cold Spring Harbor Press, Cold Spring Harbor, NY, pp. 471–504.

    Google Scholar 

  12. Pon, L. and Schatz, G. (1991) Biogenesis of yeast mitochondria, in The Molecular Biology of the Yeast Saccharomyces: Genome Dynamics, Protein Synthesis, and Energetics (Broach, J.R., Pringle, J.R., and Jones, E.W., eds.), Cold Spring Harbor Press, Cold Spring Harbor, NY, pp. 333–406.

    Google Scholar 

  13. Egner, A., Jakobs, S., and Hell, S. W. (2002) Fast 100 nm resolution 3D-microscope reveals structural plasticity of mitochondria in live yeast. Proc. Natl. Acad. Sci. U. S. A. 99, 3370–3375.

    Article  CAS  PubMed  Google Scholar 

  14. Visser, W., van Spronsen, E. A., Nanninga, N., Pronk, J. T., Gijs Kuenen, J., and van Dijken, J.P. (1995) Effects of growth conditions on mitochondrial morphology in Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 67, 243–253.

    Article  CAS  PubMed  Google Scholar 

  15. de Zamaroczy, M. and Bernardi, G. (1985) Sequence organization of the mitochondrial genome of yeast-a review. Gene 37, 1–17.

    Article  PubMed  Google Scholar 

  16. Dimmer, K. S., Fritz, S., Fuchs, F., et al. (2002) Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol. Biol. Cell 13, 847–853.

    Article  CAS  PubMed  Google Scholar 

  17. Tzagoloff, A. and Dieckmann, C. L. (1990) PET genes of Saccharomyces cerevisiae. Microbiol. Rev. 54, 211–225.

    CAS  PubMed  Google Scholar 

  18. Sickmann, A., Reinders, J., Wagner, Y., et al. (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl. Acad. Sci. U. S. A. 100, 13,207–13,212.

    Article  CAS  PubMed  Google Scholar 

  19. Prokisch, H., Scharfe, C., Camp, D. G., 2nd, et al. (2004) Integrative analysis of the mitochondrial proteome in yeast. PLoS Biol. 2, e160.

    Article  PubMed  Google Scholar 

  20. Reichert, A. S. and Neupert, W. (2004) Mitochondriomics or what makes us breathe. Trends Genet. 20, 555–562.

    Article  CAS  PubMed  Google Scholar 

  21. Scheffler, I. E. (2000) A century of mitochondrial research: achievements and perspectives. Mitochondrion 1, 3–31.

    Article  Google Scholar 

  22. Mortimer, R. K. and Johnston, J. R. (1986) Genealogy of principal strains of the yeast genetic stock center. Genetics 113, 35–43.

    CAS  PubMed  Google Scholar 

  23. Brachmann, C. B., Davies, A., Cost, G. J., et al. D. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132.

    Article  CAS  PubMed  Google Scholar 

  24. Gaisne, M., Becam, A. M., Verdiere, J., and Herbert, C. J. (1999) A “natural” mutation in Saccharomyces cerevisiae strains derived from S288c affects the complex regulatory gene HAP1 (CYP1). Curr. Genet. 36, 195–200.

    Article  CAS  PubMed  Google Scholar 

  25. Veal, E. A., Ross, S. J., Malakasi, P., Peacock, E., and Morgan, B. A. (2003) Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor. J. Biol. Chem. 278, 30896–30904.

    Article  CAS  PubMed  Google Scholar 

  26. Sherman, F. (1963) Respiration-deficient mutants of yeast. I. Genetics. Genetics 48, 375–385.

    CAS  PubMed  Google Scholar 

  27. Sikorski, R.S. and Hieter, P. (1989) A system of shuttle vectors and host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27.

    CAS  PubMed  Google Scholar 

  28. Daum, G., Böhni, P. C., and Schatz, G. (1982) Import of proteins into mitochondria: cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J. Biol. Chem. 257, 13,028–13,033.

    CAS  PubMed  Google Scholar 

  29. Diekert, K., de Kroon, A. I. P. M., Kispal, G., and Lill, R. (2001) Isolation and subfractionation of mitochondria from the yeast Saccharomyces cerevisiae. Methods Cell Biol. 65, 37–51.

    Article  CAS  PubMed  Google Scholar 

  30. Glick, B.S. and Pon, L. A. (1995) Isolation of highly purified mitochondria from Saccharomyces cerevisiae. Methods Enzymol. 260, 213–223.

    Article  CAS  PubMed  Google Scholar 

  31. Rowley, N., Prip-Buus, C., Westermann, B., et al. (1994) Mdj1p, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding. Cell 77, 249–259.

    Article  CAS  PubMed  Google Scholar 

  32. Westermann, B. and Neupert, W. (2000) Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast 16, 1421–1427.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Altmann, K., Dürr, M., Westermann, B. (2007). Saccharomyces cerevisiae as a Model Organism to Study Mitochondrial Biology. In: Leister, D., Herrmann, J.M. (eds) Mitochondria. Methods in Molecular Biology™, vol 372. Humana Press. https://doi.org/10.1007/978-1-59745-365-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-365-3_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-667-2

  • Online ISBN: 978-1-59745-365-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics