Skip to main content

Assessing DNA Structures with 125I Radioprobing

  • Protocol
  • First Online:
G-Quadruplex DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 608))

  • 1875 Accesses

Abstract

Iodine-125 radioprobing is based on incorporation of radioiodine into a defined position in a nucleic acid molecule. Decay of 125I results in the emission of multiple, low-energy Auger electrons that, along with positively charged residual daughter nuclide, produce DNA strand breaks. The probability of such strand breaks at a given nucleotide is in inverse proportion to the distance from the 125I atom to the sugar of that nucleotide. Therefore, conclusions can be drawn about the conformation or folding of a DNA or RNA molecule based on the distribution of 125I decay-induced strand breaks. Here we describe in detail the application 125I radioprobing for studying the conformation of quadruplex structures, and discuss the advantages and limitations of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334:364–366

    Article  CAS  PubMed  Google Scholar 

  2. Panyutin IG, Neumann RD (2005) The potential for gene-targeted radiation therapy of cancers. Trends Biotechnol 23:492–496

    Article  CAS  PubMed  Google Scholar 

  3. Martin RF, Haseltine WA (1981) Range of radiochemical damage to DNA with decay of iodine-125. Science 213:896–898

    Article  CAS  PubMed  Google Scholar 

  4. Kassis AI (2004) The amazing world of auger electrons. Int J Radiat Biol 80:789–803

    Article  CAS  PubMed  Google Scholar 

  5. Lobachevsky PN, Martin RF (2000) Iodine-125 decay in a synthetic oligodeoxynucleotide. II. The role of auger electron irradiation compared to charge neutralization in DNA breakage. Radiat Res 153:271–278

    Article  CAS  PubMed  Google Scholar 

  6. Panyutin IG, Neumann RD (1994) Sequence-specific DNA double-strand breaks induced by triplex forming 125I labeled oligonucleotides. Nucleic Acids Res 22:4979–4982

    Article  CAS  PubMed  Google Scholar 

  7. Lobachevsky PN, Martin RF (2000) Iodine-125 decay in a synthetic oligodeoxynucleotide. I. Fragment size distribution and evaluation of breakage probability. Radiat Res 153:263–270

    Article  CAS  PubMed  Google Scholar 

  8. Panyutin IG, Neumann RD (1997) Radioprobing of DNA: distribution of DNA breaks produced by decay of 125I incorporated into a triplex-forming oligonucleotide correlates with geometry of the triplex. Nucleic Acids Res 25:883–887

    Article  CAS  PubMed  Google Scholar 

  9. Karamychev VN, Zhurkin VB, Garges S, Neumann RD, Panyutin IG (1999) Detecting the DNA kinks in a DNA-CRP complex in solution with iodine-125 radioprobing. Nat Struct Biol 6:747–750

    Article  CAS  PubMed  Google Scholar 

  10. Karamychev VN, Tatusov A, Komissarova N et al (2003) Iodine-125 radioprobing of E. coli RNA polymerase transcription elongation complexes. Methods Enzymol 371:106–120

    Article  CAS  PubMed  Google Scholar 

  11. He Y, Neumann RD, Panyutin IG (2004) Intramolecular quadruplex conformation of human telomeric DNA assessed with 125I-radioprobing. Nucleic Acids Res 32:5359–5367

    Article  CAS  PubMed  Google Scholar 

  12. Malkov VA, Panyutin IG, Neumann RD, Zhurkin VB, Camerini-Otero RD (2000) Radioprobing of a RecA-three-stranded DNA complex with iodine 125: evidence for recognition of homology in the major groove of the target duplex. J Mol Biol 299:629–640

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Patel DJ (1993) Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1:263–282

    Article  CAS  PubMed  Google Scholar 

  14. Parkinson GN, Lee MP, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417:876–880

    Article  CAS  PubMed  Google Scholar 

  15. Luu KN, Phan AT, Kuryavyi V, Lacroix L, Patel DJ (2006) Structure of the human telomere in K+ solution: an intramolecular (3 + 1) G-quadruplex scaffold. J Am Chem Soc 128:9963–9970

    Article  CAS  PubMed  Google Scholar 

  16. Ambrus A, Chen D, Dai J, Bialis T, Jones RA, Yang D (2006) Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 34:2723–2735

    Article  CAS  PubMed  Google Scholar 

  17. Phan AT, Luu KN, Patel DJ (2006) Different loop arrangements of intramolecular human telomeric (3+1) G-quadruplexes in K+ solution. Nucleic Acids Res 34:5715–5719

    Article  CAS  PubMed  Google Scholar 

  18. Dai J, Carver M, Punchihewa C, Jones RA, Yang D (2007) Structure of the Hybrid-2 type intramolecular human telomeric G-quadruplex in K+ solution: insights into structure polymorphism of the human telomeric sequence. Nucleic Acids Res 35:4927–4940

    Article  CAS  PubMed  Google Scholar 

  19. Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35:W43–46

    Article  PubMed  Google Scholar 

  20. Panyutin IV, Luu AN, Panyutin IG, Neumann RD (2001) Strand breaks in whole plasmid dna produced by the decay of (125)I in a triplex-forming oligonucleotide. Radiat Res 156:158–166

    Article  CAS  PubMed  Google Scholar 

  21. Das R, Laederach A, Pearlman SM, Herschlag D, Altman RB (2005) SAFA: semi-automated footprinting analysis software for high-throughput quantification of nucleic acid footprinting experiments. RNA 11:344–354

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by the Intramural Research Program of the NIH, Clinical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor G. Panyutin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gaynutdinov, T.I., Neumann, R.D., Panyutin, I.G. (2010). Assessing DNA Structures with 125I Radioprobing. In: Baumann, P. (eds) G-Quadruplex DNA. Methods in Molecular Biology, vol 608. Humana Press. https://doi.org/10.1007/978-1-59745-363-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-363-9_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-950-5

  • Online ISBN: 978-1-59745-363-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics