Skip to main content

2-Aminopurine as a Probe for Quadruplex Loop Structures

  • Protocol
  • First Online:
G-Quadruplex DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 608))

Abstract

Fluorescent reporter groups have served for many years as sensitive probes of macromolecular structure. Such probes can be especially useful in comparative studies such as detection of conformational changes and discrimination among structural models. Spectroscopic methods such as fluorescence are attractive because they are rapid, require small amounts of material, are nondestructive, can be carried out with commonly available equipment, and are relatively inexpensive. In addition, there is a rich library of theoretical and practical materials available to aid in data interpretation.

The intrinsic fluorescence of most nucleic acids is too low to be useful in structural studies. Thus, it is necessary to incorporate a suitable reporter group to utilize fluorescence methods involving polynucleotide structure. A highly fluorescent adenine analog, 2-aminopurine, has long served in this capacity. The present article describes our use of 2-aminopurine as a probe of loop structures in quadruplex DNA. In particular, we show how knowledge of the relative intensity of 2-aminopurine emission as well as its sensitivity to exogenous quenching molecules such as acrylamide can aid in comparing crystal and solution structures of an oligonucleotide model of the human telomere and in discrimination among models containing tandem repeats of the telomeric quadruplex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang Y, Patel DJ (1993) Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1:263–282

    Article  CAS  PubMed  Google Scholar 

  2. Davis JT (2004) G-quartets 40 years later: From 5′-GMP to molecular biology and supramolecular chemistry. Angew Chem Int Ed Engl 43:668–698

    Article  CAS  PubMed  Google Scholar 

  3. Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S (2006) Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res 34:5402–5415

    Article  CAS  PubMed  Google Scholar 

  4. Dai J, Carver M, Yang D (2008) Polymorphism of human telomeric quadruplex structures. Biochimie 90:1172–1183

    Article  CAS  PubMed  Google Scholar 

  5. Huppert JL (2008) Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem Soc Rev 37:1375–1384

    Article  CAS  PubMed  Google Scholar 

  6. Lane AN, Chaires JB, Gray RD, Trent JO (2008) Stability and kinetics of G-quadruplex structures. Nucleic Acids Res 36:5482–5515

    Article  CAS  PubMed  Google Scholar 

  7. Neidle S, Parkinson GN (2008) Quadruplex DNA crystal structures and drug design. Biochimie 90:1184–1196

    Article  CAS  PubMed  Google Scholar 

  8. Li J, Correia JJ, Wang L, Trent JO, Chaires JB (2005) Not so crystal clear: the structure of the human telomere G-quadruplex in solution differs from that present in a crystal. Nucleic Acids Res 33:4649–4659

    Article  CAS  PubMed  Google Scholar 

  9. Gellert M, Lipsett MN, Davies DR (1962) Helix formation by guanylic acid. Proc Natl Acad Sci U S A 48:2013–2018

    Article  CAS  PubMed  Google Scholar 

  10. Williamson JR, Raghuraman MK, Cech TR (1989) Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59:871–880

    Article  CAS  PubMed  Google Scholar 

  11. Wright WE, Tesmer VM, Huffman KE, Levene SD, Shay JW (1997) Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev 11:2801–2809

    Article  CAS  PubMed  Google Scholar 

  12. Paeschke K, Simonsson T, Postberg J, Rhodes D, Lipps HJ (2005) Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat Struct Mol Biol 12:847–854

    Article  CAS  PubMed  Google Scholar 

  13. Schaffitzel C, Berger I, Postberg J, Hanes J, Lipps HJ, Pluckthun A (2001) In vitro generated antibodies specific for telomeric guanine-quadruplex DNA react with Stylonychia lemnae macronuclei. Proc Natl Acad Sci U S A 98:8572–8577

    Article  CAS  PubMed  Google Scholar 

  14. Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130:223–233

    Article  CAS  PubMed  Google Scholar 

  15. Ruzankina Y, Asare A, Brown EJ (2008) Replicative stress, stem cells and aging. Mech Ageing Dev 129:460–466

    Article  CAS  PubMed  Google Scholar 

  16. Huppert JL, Balasubramanian S (2007) G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res 35:406–413

    Article  CAS  PubMed  Google Scholar 

  17. Duquette ML, Handa P, Vincent JA, Taylor AF, Maizels N (2004) Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev 18:1618–1629

    Article  CAS  PubMed  Google Scholar 

  18. Han H, Hurley LH (2000) G-quadruplex DNA: a potential target for anti-cancer drug design. Trends Pharmacol Sci 21:136–142

    Article  CAS  PubMed  Google Scholar 

  19. Teng Y, Girvan AC, Casson LK, Pierce WM Jr, Qian M, Thomas SD et al (2007) AS1411 alters the localization of a complex containing protein arginine methyltransferase 5 and nucleolin. Cancer Res 67:10491–10500

    Article  CAS  PubMed  Google Scholar 

  20. Shafer RH, Smirnov I (2000) Biological aspects of DNA/RNA quadruplexes. Biopolymers 56:209–227

    Article  CAS  PubMed  Google Scholar 

  21. Juskowiak B (2006) Analytical potential of the quadruplex DNA-based FRET probes. Anal Chim Acta 568:171–180

    Article  CAS  PubMed  Google Scholar 

  22. Alberti P, Bourdoncle A, Sacca B, Lacroix L, Mergny JL (2006) DNA nanomachines and nanostructures involving quadruplexes. Org Biomol Chem 4:3383–3391

    Article  CAS  PubMed  Google Scholar 

  23. Parkinson GN, Lee MP, Neidle S (2002) Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417:876–880

    Article  CAS  PubMed  Google Scholar 

  24. Ambrus A, Chen D, Dai J, Bialis T, Jones RA, Yang D (2006) Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution. Nucleic Acids Res 34:2723–2735

    Article  CAS  PubMed  Google Scholar 

  25. Luu KN, Phan AT, Kuryavyi V, Lacroix L, Patel DJ (2006) Structure of the human telomere in K+ solution: an intramolecular (3 + 1) G-quadruplex scaffold. J Am Chem Soc 128:9963–9970

    Article  CAS  PubMed  Google Scholar 

  26. Xu Y, Noguchi Y, Sugiyama H (2006) The new models of the human telomere d[AGGG(TTAGGG)3] in K+ solution. Bioorg Med Chem 14:5584–5591

    Article  CAS  PubMed  Google Scholar 

  27. Ballin JD, Bharill S, Fialcowitz-White EJ, Gryczynski I, Gryczynski Z, Wilson GM (2007) Site-specific variations in RNA folding thermodynamics visualized by 2-aminopurine fluorescence. Biochemistry 46:13948–13960

    Article  CAS  PubMed  Google Scholar 

  28. Ballin JD, Prevas JP, Bharill S, Gryczynski I, Gryczynski Z, Wilson GM (2008) Local RNA conformational dynamics revealed by 2-aminopurine solvent accessibility. Biochemistry 47:7043–7052

    Article  CAS  PubMed  Google Scholar 

  29. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Plenum, New York, NY

    Google Scholar 

  30. Eftink MR (1991) In: Lakowicz JR (ed.), Topics in fluorescence spectroscopy, vol 2. Plenum, New York, NY. pp. 53–126

    Google Scholar 

  31. Hardman SJ, Botchway SW, Thompson KC (2008) Evidence for a nonbase stacking effect for the environment-sensitive fluorescent base pyrrolocytosine-comparison with 2-aminopurine. Photochem Photobiol 84:1473–1479

    Article  CAS  PubMed  Google Scholar 

  32. Kimura T, Kawai K, Fujitsuka M, Majima T (2004) Fluorescence properties of 2-aminopurine in human telomeric DNA. Chem Commun:1438–1439

    Google Scholar 

  33. Kimura T, Kawai K, Fujitsuka M, Majima T (2004) Detection of the G-quadruplex-TMPyP4 complex by 2-aminopurine modified human telomeric DNA. Chem Commun 4:401–402

    Google Scholar 

  34. Petraccone L, Trent JO, Chaires JB (2008) The tail of the telomere. J Am Chem Soc 130:16530–16532

    Article  CAS  PubMed  Google Scholar 

  35. Johnson NP, Baase WA, Von Hippel PH (2004) Low-energy circular dichroism of 2-aminopurine dinucleotide as a probe of local conformation of DNA and RNA. Proc Natl Acad Sci U S A 102:3426–3431

    Article  Google Scholar 

  36. Smagowicz J, Wierzchowski KL (1974) Lowest excited states of 2-aminopurine. J Lumin 8:210–232

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant CA35635 from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan B. Chaires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gray, R.D., Petraccone, L., Buscaglia, R., Chaires, J.B. (2010). 2-Aminopurine as a Probe for Quadruplex Loop Structures. In: Baumann, P. (eds) G-Quadruplex DNA. Methods in Molecular Biology, vol 608. Humana Press. https://doi.org/10.1007/978-1-59745-363-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-363-9_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-950-5

  • Online ISBN: 978-1-59745-363-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics