Skip to main content

Isolation of G-Quadruplex DNA Using NMM-Sepharose Affinity Chromatography

  • Protocol
  • First Online:
G-Quadruplex DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 608))

Abstract

DNA can adopt a variety of non-standard conformations, including structures known as G-quadruplexes (G4-DNA), which consist of stacked tetrads of guanines. There are growing indications that G4-DNA is of biological importance, including evidence that it plays roles in telomere function, DNA recombination and the regulation of transcription and translation. However, it has been difficult to obtain direct, physical evidence for the presence of G-quadruplex DNA in vivo due, in part, to a lack of tools for G4-DNA identification. Here, we describe a method for coupling the G4-DNA binding ligand N-methyl mesoporphyrin IX (NMM) to a Sepharose resin, and demonstrate the ability of the resin to bind tightly and selectively to DNA oligonucleotides with the capacity to form G4-DNA. This technique might also be extended to examine genomic distributions of G4-DNA isolated from in vivo sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paeschke K, Simonsson T, Postberg J, Rhodes D, Lipps HJ (2005) Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo. Nat Struct Mol Biol 12:847–854

    Article  CAS  PubMed  Google Scholar 

  2. Hershman SG, Chen Q, Lee JY, Kozak ML, Yue P, Wang L-S, Johnson FB (2008) Genomic distribution and functional analyses of potential G-quadruplex-forming sequences in Saccharomyces cerevisiae. Nucl Acids Res 36:144–156

    Article  CAS  PubMed  Google Scholar 

  3. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci USA 99:11593–11598

    Article  CAS  PubMed  Google Scholar 

  4. Cogoi S, Xodo LE (2006) G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucl Acids Res 34:2536–2549

    Article  CAS  PubMed  Google Scholar 

  5. Kumari S, Bugaut A, Huppert JL, Balasubramanian S (2007) An RNA G-quadruplex in the 5[prime] UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol 3:218–221

    Article  CAS  PubMed  Google Scholar 

  6. Khateb S, Weisman-Shomer P, Hershco-Shani I, Ludwig AL, Fry M (2007) The tetraplex (CGG)n destabilizing proteins hnRNP A2 and CBF-A enhance the in vivo translation of fragile X premutation mRNA. Nucleic Acids Res 35:5775–5788

    Article  CAS  PubMed  Google Scholar 

  7. Larson ED, Duquette ML, Cummings WJ, Streiff RJ, Maizels N (2005) MutS[alpha] binds to and promotes synapsis of transcriptionally activated immunoglobulin switch regions. Curr Biol 15:470–474

    Article  CAS  PubMed  Google Scholar 

  8. Duquette ML, Handa P, Vincent JA, Taylor AF, Maizels N (2004) Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev 18:1618–1629

    Article  CAS  PubMed  Google Scholar 

  9. Huppert JL, Balasubramanian S (2007) G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res 35:406–413

    Article  CAS  PubMed  Google Scholar 

  10. Du Z, Kong P, Gao Y, Li N (2007) Enrichment of G4 DNA motif in transcriptional regulatory region of chicken genome. Biochem Biophys Res Commun 354:1067–1070

    Article  CAS  PubMed  Google Scholar 

  11. Rawal P, Kummarasetti VB, Ravindran J, Kumar N, Halder K, Sharma R, Mukerji M, Das SK, Chowdhury S (2006) Genome-wide prediction of G4 DNA as regulatory motifs: Role in Escherichia coli global regulation. Genome Res 16:644–655

    Article  CAS  PubMed  Google Scholar 

  12. Johnson JE, Smith JS, Kozak ML, Johnson FB (2008) In vivo veritas: Using yeast to probe the biological functions of G-quadruplexes. Biochimie 90:1250–1263

    Article  CAS  PubMed  Google Scholar 

  13. Shklover J, Etzioni S, Weisman-Shomer P, Yafe A, Bengal E, Fry M (2007) MyoD uses overlapping but distinct elements to bind E-box and tetraplex structures of regulatory sequences of muscle-specific genes. Nucleic Acids Res 35:7087–7095

    Article  CAS  PubMed  Google Scholar 

  14. Fry M (2007) Tetraplex DNA and its interacting proteins. Front Biosci 12:4336–4351

    Article  CAS  PubMed  Google Scholar 

  15. Sun D, Thompson B, Cathers BE, Salazar M, Kerwin SM, Trent JO, Jenkins TC, Neidle S, Hurley LH (1997) Inhibition of human telomerase by a G-quadruplex-interactive compound. J Med Chem 40:2113–2116

    Article  CAS  PubMed  Google Scholar 

  16. Burger AM, Dai F, Schultes CM, Reszka AP, Moore MJ, Double JA, Neidle S (2005) The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res 65:1489–1496

    Article  CAS  PubMed  Google Scholar 

  17. De Cian A, Lacroix L, Douarre C, Temime-Smaali N, Trentesaux C, Riou JF, Mergny JL (2008) Targeting telomeres and telomerase. Biochimie 90:131–155

    Article  PubMed  Google Scholar 

  18. Gomez D, O’Donohue MF, Wenner T, Douarre C, Macadre J, Koebel P, Giraud-Panis MJ, Kaplan H, Kolkes A, Shin-ya K, Riou JF (2006) The G-quadruplex ligand telomestatin inhibits POT1 binding to telomeric sequences in vitro and induces GFP-POT1 dissociation from telomeres in human cells. Cancer Res 66:6908–6912

    Article  CAS  PubMed  Google Scholar 

  19. Salvati E, Leonetti C, Rizzo A, Scarsella M, Mottolese M, Galati R, Sperduti I, Stevens MF, D’Incalci M, Blasco M, Chiorino G, Bauwens S, Horard B, Gilson E, Stoppacciaro A, Zupi G, Biroccio A (2007) Telomere damage induced by the G-quadruplex ligand RHPS4 has an antitumor effect. J Clin Invest 117:3236–3247

    Article  CAS  PubMed  Google Scholar 

  20. Tahara H, Shin-Ya K, Seimiya H, Yamada H, Tsuruo T, Ide T (2006) G-quadruplex stabilization by telomestatin induces TRF2 protein dissociation from telomeres and anaphase bridge formation accompanied by loss of the 3′ telomeric overhang in cancer cells. Oncogene 25:1955–1966

    Article  CAS  PubMed  Google Scholar 

  21. Fernando H, Rodriguez R, Balasubramanian S (2008) Selective recognition of a DNA G-quadruplex by an engineered antibody. Biochemistry 47:9365–9371

    Article  CAS  PubMed  Google Scholar 

  22. Lane AN, Chaires JB, Gray RD, Trent JO (2008) Stability and kinetics of G-quadruplex structures. Nucleic Acids Res 36:5482–5515

    Article  CAS  PubMed  Google Scholar 

  23. Ragazzon P, Chaires JB (2007) Use of competition dialysis in the discovery of G-quadruplex selective ligands. Methods 43:313–323

    Article  CAS  PubMed  Google Scholar 

  24. Chang CC, Chu JF, Kao FJ, Chiu YC, Lou PJ, Chen HC, Chang TC (2006) Verification of antiparallel G-quadruplex structure in human telomeres by using two-photon excitation fluorescence lifetime imaging microscopy of the 3, 6-Bis(1-methyl-4-vinylpyridinium)carbazole diiodide molecule. Anal Chem 78:2810–2815

    Article  CAS  PubMed  Google Scholar 

  25. Ren J, Chaires JB (1999) Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry 38:16067–16075

    Article  CAS  PubMed  Google Scholar 

  26. Arthanari H, Basu S, Kawano TL, Bolton PH (1998) Fluorescent dyes specific for quadruplex DNA. Nucl Acids Res 26:3724–3728

    Article  CAS  PubMed  Google Scholar 

  27. Chaires JB (2005) Competition dialysis: An assay to measure the structural selectivity of drug-nucleic acid interactions. Curr Med Chem Anticancer Agents 5:339–352

    Article  CAS  PubMed  Google Scholar 

  28. Huber MD, Lee DC, Maizels N (2002) G4 DNA unwinding by BLM and Sgs1p: Substrate specificity and substrate-specific inhibition. Nucleic Acids Res 30:3954–3961

    Article  CAS  PubMed  Google Scholar 

  29. Li Y, Geyer R, Sen D (1996) Recognition of anionic porphyrins by DNA aptamers. Biochemistry 35:6911–6922

    Article  CAS  PubMed  Google Scholar 

  30. GEHealthcare (2006) EAH Sepharose 4B Instructions 71-7097-00AD

    Google Scholar 

  31. Forstemann K, Lingner J (2001) Molecular basis for telomere repeat divergence in budding yeast. Mol Cell Biol 21:7277–7286

    Article  CAS  PubMed  Google Scholar 

  32. Giraldo R, Rhodes D (1994) The yeast telomere-binding protein RAP1 binds to and promotes the formation of DNA quadruplexes in telomeric DNA. EMBO J 13:2411–2420

    CAS  PubMed  Google Scholar 

  33. Bugaut A, Balasubramanian S (2008) A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes. Biochemistry 47:689–697

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Robert M. Carlson, J. Brad Chaires, and Paul Ryvkin for advice and discussions. This work was supported by NIH grants R01-AG021521 and P01-AG031862.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Brad Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Smith, J.S., Johnson, F.B. (2010). Isolation of G-Quadruplex DNA Using NMM-Sepharose Affinity Chromatography. In: Baumann, P. (eds) G-Quadruplex DNA. Methods in Molecular Biology, vol 608. Humana Press. https://doi.org/10.1007/978-1-59745-363-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-363-9_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-950-5

  • Online ISBN: 978-1-59745-363-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics