Skip to main content

Microbial Exploitation and Subversion of the Human Chemokine Network

  • Protocol
Book cover Cytokines in Human Health

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 807 Accesses

Abstract

The chemokine network, comprising cell surface G protein-coupled receptors and soluble small molecular-weight protein ligands, constitutes a highly evolved system that facilitates leukocyte recruitment in both innate and adaptive immunity. As such, it has attracted attention from the research community as a means of modulating the immune system, a hypothesis that it appears has already been tested rigorously by microbes during coevolution. Several examples exist to support the notion that viruses, protozoa, and helminths have derived strategies of either exploitation or subversion, for example, using the chemokine network to gain cellular entry or to evade host immune surveillance. It is anticipated that, in the coming years, close examination of the mechanisms underlying these processes should provide opportunities for the generation of novel therapeutics. These may be of use to both thwart the microbial defense strategies and also to treat a variety of inflammatory diseases in which the inappropriate or excessive production of chemokines is pathologically implicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rot A, Von Andrian UH. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 2004;22: 891–928.

    CAS  PubMed  Google Scholar 

  2. Bazan JF, Bacon KB, Hardiman G, et al. A new class of membrane-bound chemokine with a CX3C motif. Nature 1997;385:640–644.

    CAS  PubMed  Google Scholar 

  3. Keiner GS, Kennedy J, Bacon KB, et al. Lymphotactin: a cytokine that represents a new class of chemokine. Science 1994;266:1395–1399.

    Google Scholar 

  4. Yoshida T, Imai T, Takagi S, et al. Structure and expression of two highly related genes encoding SCM-I/human lymphotactin. EEBS Lett 1996;395:82–88.

    CAS  Google Scholar 

  5. Murphy PM, Baggiolini M, Charo IF, et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 2000;52: 145–176.

    CAS  PubMed  Google Scholar 

  6. Murphy PM. International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol Rev 2002;54:227–229.

    CAS  PubMed  Google Scholar 

  7. Deuel TF, Keim PS, Farmer M, Heinrikson RL. Amino acid sequence of human platelet factor 4. Proc Natl Acad Sci USA 1977;74:2256–2258.

    CAS  PubMed  Google Scholar 

  8. Murphy PM. Molecular mimicry and the generation of host defense protein diversity. Cell 1993;72:823–826.

    CAS  PubMed  Google Scholar 

  9. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of seven-transmembrane, G protein-coupled receptor. Science 1996;272:872–877.

    CAS  PubMed  Google Scholar 

  10. Bleui CC, Farzan M, Choe H, et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 1996;382:829–833.

    Google Scholar 

  11. Oberlin E, Amara A, Bachelerie F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1 [published erratum appears in Nature 1996 Nov 21;384(6606):288], Nature 1996;382:833–835.

    CAS  PubMed  Google Scholar 

  12. Alkhatib G, Combadiere C, Broder CC, et al. CC CKR5: a RANTES, MIP-lalpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 1996;272:1955–1958

    CAS  PubMed  Google Scholar 

  13. Deng H, Liu R, Ellmeier W, et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996;381:661–666.

    CAS  PubMed  Google Scholar 

  14. Dragic T, Litwin V, Allaway GP, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996;381:667–673.

    CAS  PubMed  Google Scholar 

  15. Eckert DM, Kim PS. Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem 2001;70:777–810.

    CAS  PubMed  Google Scholar 

  16. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P. Identification of RANTES, MIP-la, and MIP-Iβ as the major HIV-suppresive factors produced by CD8+ T cells. Science 1996;270:1811–1815.

    Google Scholar 

  17. Samson M, Libert F, Doranz BJ, et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996;382:722–725.

    CAS  PubMed  Google Scholar 

  18. Dean M, Carrington M, Winkler C, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 1996;273:1856–1862.

    CAS  PubMed  Google Scholar 

  19. Mecsas J, Franklin G, Kuziel WA, Brubaker RR, Falkow S, Mosier DE. Evolutionary genetics: CCR5 mutation and plague protection. Nature 2004;427:606.

    CAS  PubMed  Google Scholar 

  20. Michael NL, Nelson JA, KewalRamani VN, et al. Exclusive and persistent use of the entry coreceptor CXCR4 by human immunodeficiency virus type 1 from a subject homozygous for CCR5 delta32. J Virol 1998;72:6040–6047.

    CAS  PubMed  Google Scholar 

  21. Zhang YJ, Zhang L, Ketas T, Korber BT, Moore JP. HIV type 1 molecular clones able to use the Bonzo/STRL-33 coreceptor for virus entry. AIDS Res Hum Retroviruses 2001; 17:217–227.

    PubMed  Google Scholar 

  22. Choe H, Farzan M, Sun Y, et al. The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996;85:1135–1148.

    CAS  PubMed  Google Scholar 

  23. Alkhatib G, Berger EA, Murphy PM, Pease JE. Determinants of HIV-1 coreceptor function on CC chemokine receptor 3. Importance of both extracel-lular and transmembrane/cytoplasmic regions. J Biol Chem 1997;272:20,420–20,426.

    CAS  PubMed  Google Scholar 

  24. Lee S, Tiffany HL, King L, Murphy PM, Golding H, Zaitseva MB. CCR8 on human thymocytes functions as a human immunodeficiency virus type 1 coreceptor. J Virol 2000;74:6946–6952.

    CAS  PubMed  Google Scholar 

  25. Combadiere C, Salzwedel K, Smith ED, Tiffany HL, Berger EA, Murphy PM. Identification of CX3CR1. A chemotactic receptor for the human CX3C chemokine fractalkine and a fusion coreceptor for HIV-1. J Biol Chem 1998;273:23,799–23,804.

    CAS  PubMed  Google Scholar 

  26. Hadley TJ, Peiper SC. From malaria to chemokine receptor: the emerging physiological role of the duffy blood group antigen. Blood 1997;89:3077–3091.

    CAS  PubMed  Google Scholar 

  27. Pogo AO, Chaudhuri A. The Duffy protein: a malarial and chemokine receptor. Semin Hematol 2000;37:122–129.

    CAS  PubMed  Google Scholar 

  28. Young MD, Eyles DE, Burgess RW, Jeffrey GM. Experimental testing of the immunity of negroes to Plasmodium vivax. J Parasitol 1955;41:315–322.

    CAS  PubMed  Google Scholar 

  29. Miller LH, Mason SJ, Dvorak JA, McGinniss MH, Rothman IK. Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science 1975;189:561–563.

    CAS  PubMed  Google Scholar 

  30. Darbonne WC, Rice GC, Mohler MA, et al. Red blood cells are a sink for interleukin 8, a leukocyte chemotaxin. J Clin Invest 1991;88:1362–1369.

    CAS  PubMed  Google Scholar 

  31. Horuk R, Chitnis CE, Darbonne WC, et al. A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science 1993;261:1182–1184.

    CAS  PubMed  Google Scholar 

  32. Chaudhuri A, Polyakova J, Zbrzezna V, Williams K, Gulati S, Pogo AO. Cloning of glycoprotein D cDNA, which encodes the major subunit of the Duffy blood group system and the receptor for the Plasmodium vivax malaria parasite. Proc Natl Acad Sci USA 1993;90:10,793–10,797.

    CAS  PubMed  Google Scholar 

  33. Peiper SC, Wang ZX, Neote K, et al. The Duffy antigen/receptor for chemokines (DARC) is expressed in endothelial cells of Duffy negative individuals who lack the erythrocyte receptor. J Exp Med 1995;181:1311–1317.

    CAS  PubMed  Google Scholar 

  34. Horuk R, Martin AW, Wang Z, et al. Expression of chemokine receptors by subsets of neurons in the central nervous system. J Immunol 1997;158:2882–2890.

    CAS  PubMed  Google Scholar 

  35. Tournamille C, Colin Y, Cartron JP, Le Van Kim C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffynegative individuals. Nat Genet 1995; 10:224–228.

    CAS  PubMed  Google Scholar 

  36. Neote K, Mak JY, Kolakowski LF Jr., Schall TJ. Functional and biochemical analysis of the cloned Duffy antigen: identity with the red blood cell chemokine receptor. Blood 1994;84:44–52.

    CAS  PubMed  Google Scholar 

  37. Auger GA, Pease JE, Shen X, Xanthou G, Barker MD. Alanine scanning mutagenesis of CCR3 reveals that the three intracellular loops are essential for functional receptor expression. Eur J Immunol 2002;32:1052–1058.

    CAS  PubMed  Google Scholar 

  38. Dawson TC, Lentsch AB, Wang Z, et al. Exaggerated response to endotoxin in mice lacking the Duffy antigen/receptor for chemokines (DARC). Blood 2000;96:1681–1684.

    CAS  PubMed  Google Scholar 

  39. Lentsch AB. The Duffy antigen/receptor for chemokines (DARC) and prostate cancer. A role as clear as black and white? FASEB J 2002;16:1093–1095.

    CAS  PubMed  Google Scholar 

  40. Hatabu T, Kawazu S, Aikawa M, Kano S. Binding of plasmodium falciparuminfected erythrocytes to the membrane-bound form of Fractalkine/ CX3CL1. Proc Natl Acad Sci USA 2003;100:15,942–15,946.

    CAS  PubMed  Google Scholar 

  41. Varmus HE. The molecular genetics of cellular oncogenes. Annu Rev Genet 1984;18:553–612.

    CAS  PubMed  Google Scholar 

  42. Casarosa P, Bakker RA, Verzijl D, et al. Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28. J Biol Chem 2001;276: 1133–1137.

    CAS  PubMed  Google Scholar 

  43. Gao JL, Murphy PM. Human cytomegalovirus open reading frame US28 encodes a functional beta chemokine receptor. J Biol Chem 1994;269:28,539–28,542.

    CAS  PubMed  Google Scholar 

  44. Neote K, DiGregorio D, Mak JY, Horuk R, Schall TJ. Molecular cloning, functional expression, and signalling characteristics of a C-C chemokine receptor. Cell 1993;72:415–425.

    CAS  PubMed  Google Scholar 

  45. Kuhn DE, Beall CJ, Kolattukudy PE. The cytomegalovirus US28 protein binds multiple CC chemokines with high affinity. Biochem Biophys Res Commun 1995;211:325–330.

    CAS  PubMed  Google Scholar 

  46. Michelson S, Dal Monte P, Zipeto D, et al. Modulation of RANTES production by human cytomegalovirus infection of fibroblasts. J Virol 1997;71:6495–6500.

    CAS  PubMed  Google Scholar 

  47. Haskell CA, Cleary MD, Charo IF. Unique role of the chemokine domain of fractalkine in cell capture. Kinetics of receptor dissociation correlate with cell adhesion. J Biol Chem 2000;275:34,183–34,189.

    CAS  PubMed  Google Scholar 

  48. Beisser PS, Laurent L, Virelizier JL, Michelson S. Human cytomegalovirus chemokine receptor gene US28 is transcribed in latently infected THP-1 monocytes. J Virol 2001;75:5949–5957.

    CAS  PubMed  Google Scholar 

  49. Bodaghi B, Jones TR, Zipeto D, et al. Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J Exp Med 1998;18: 855–866.

    Google Scholar 

  50. Randolph-Habecker JR, Rahill B, et al. The expression of the cytomegalovirus chemokine receptor homolog US 28 sequesters biologicalally active CC chemokines and alters IL-8 production. Cytokine 2002; 19:37–46.

    CAS  PubMed  Google Scholar 

  51. Streblow DN, Soderberg-Naucler C, Vieira J, et al. The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 1999;99:511–520.

    CAS  PubMed  Google Scholar 

  52. Pleskoff O, Treboute C, Brelot A, Heveker N, Seman M, Alizon M. Identification of a chemokine receptor encoded by human cytomegalovirus as a cofactor forHIV-1 entry. Science 1997;276:1874–1878.

    CAS  PubMed  Google Scholar 

  53. Ohagen A, Li L, Rosenzweig A, Gabuzda D. Cell-dependent mechanisms restrict the HIV type 1 coreceptor activity of US28, a chemokine receptor homolog encoded by human cytomegalo virus. AIDS Res Hum Retroviruses 2000;16:27–35.

    CAS  PubMed  Google Scholar 

  54. Singh A, Besson G, Mobasher A, Collman RG. Patterns of chemokine receptor fusion cofactor utilization by human immunodeficiency virus type 1 variants from the lungs and blood. J Virol 1999;73:6680–6690.

    CAS  PubMed  Google Scholar 

  55. Chang Y, Cesarman E, Pessin MS, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 1994;266:1865–1869.

    CAS  PubMed  Google Scholar 

  56. Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM. Kaposi’s sarcoma associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 1995;332:1186–1191.

    CAS  PubMed  Google Scholar 

  57. Cesarman E, Knowles DM. Kaposi’s sarcoma-associated herpesvirus: a lymphotropic human herpesvirus associated with Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. Semin Diagn Pathol 1997; 14:54–66.

    CAS  PubMed  Google Scholar 

  58. Cesarman E, Nador RG, Bai F, et al. Kaposi’s sarcoma-associated herpesvirus contains G protein-coupled receptor and cyclin D homologs which are expressed in Kaposi’s sarcoma and malignant lymphoma. J Virol 1996;70:8218–8223.

    CAS  PubMed  Google Scholar 

  59. Russo JJ, Bohenzky RA, Chien MC, et al. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA 1996;93: 14,862–14,867.

    CAS  PubMed  Google Scholar 

  60. Horuk R, Colby TJ, Darbonne WC, Schall TJ, Neote K. The human erythrocyte inflammatory peptide (chemokine) receptor. Biochemical characterization, solubilization, and development of a binding assay for the soluble receptor. Biochemistry 1993;32:5733–5738.

    CAS  PubMed  Google Scholar 

  61. Arvanitakis L, Geras-Raaka E, Varma A, Gershengorn MC, Cesarman E. Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 1997;385:347–350.

    CAS  PubMed  Google Scholar 

  62. Geras-Raaka E, Varma A, Ho H, Clark-Lewis I, Gershengorn MC. Human interferon-gamma-inducible protein 10 (IP-10) inhibits constitutive signaling of Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor. J Exp Med 1998;188:405–408.

    CAS  PubMed  Google Scholar 

  63. Rosenkilde MM, Kledal TN, Brauner-Osborne H, Schwartz TW. Agonists and inverse agonists for the herpesvirus 8-encoded constitutively active seventransmembrane oncogene product, ORF-74. J Biol Chem 1999;274:956–961.

    CAS  PubMed  Google Scholar 

  64. Yang TY, Chen SC, Leach MW, et al. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative dis-ease resembling Kaposi’s sarcoma. J Exp Med 2000; 191:445–454.

    CAS  PubMed  Google Scholar 

  65. Guo HG, Sadowska M, Reid W, Tschachler E, Hayward G, Reitz M. Kaposi’s sarcoma-like tumors in a human herpesvirus 8 ORF74 transgenic mouse. J Virol 2003;77:2631–2639.

    CAS  PubMed  Google Scholar 

  66. Pati S, Cavrois M, Guo HG, et al M. Activation of NF-kappaB by the human herpesvirus 8 chemokine receptor ORF74: evidence for a paracrine model of Kaposi’s sarcoma pathogenesis. J Virol 2001;75:8660–8673.

    CAS  PubMed  Google Scholar 

  67. Schwarz M, Murphy PM. Kaposi’s sarcoma-associated herpesvirus G protein coupled receptor constitutively activates NF-kappa B and induces proinflammatory cytokine and chemokine production via a C-terminal signaling determinant. J Immunol 2001;167:505–513.

    CAS  PubMed  Google Scholar 

  68. Moore PS, Boshoff C, Weiss RA, Chang Y. Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 1996;274: 1739–1744.

    CAS  PubMed  Google Scholar 

  69. Nicholas J, Ruvolo VR, Burns WH, et al. Kaposi’s sarcoma-associated human herpesvirus-8 encodes homologues of macrophage inflammatory protein-1 and interleukin-6. Nat Med 1997;3:287–292.

    CAS  PubMed  Google Scholar 

  70. Boshoff C, Endo Y, Collins PD, et al. Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines. Science 1997;278:290–294.

    CAS  PubMed  Google Scholar 

  71. Kledal TN, Rosenkilde MM, Coulin F, et al. A broad-spectrum chemokine antagonist encoded by Kaposi’s sarcoma-associated herpesvirus. Science 1997;277:1656–1659.

    CAS  PubMed  Google Scholar 

  72. Stine JT, Wood C, Hill M, et al. KSHV-encoded CC chemokine vMIP-III is a CCR4 agonist, stimulates angiogenesis, and selectively chemoattracts TH2 cells. Blood 2000;95:1151–1157.

    CAS  PubMed  Google Scholar 

  73. Dairaghi DJ, Fan RA, McMaster BE, Hanley MR, Schall TJ. HHV8-encoded vMIP-I selectively engages chemokine receptor CCR8. Agonist and antagonist profiles of viral chemokines. J Biol Chem 1999;274:21,569–21,574.

    CAS  PubMed  Google Scholar 

  74. Endres MJ, Garlisi CG, Xiao H, Shan L, Hedrick JA. The Kaposi’s sarcoma related herpesvirus (KSHV)-encoded chemokine vMIP-I is a specific agonist for the CC chemokine receptor (CCR)8. J Exp Med 1999; 189:1993–1998.

    CAS  PubMed  Google Scholar 

  75. Weber KS, Grone HJ, Rocken M, et al. Selective recruitment of Th2-type cells and evasion from a cytotoxic immune response mediated by viral macrophage inhibitory protein-II. Eur J Immunol 2001;31:2458–2466.

    CAS  PubMed  Google Scholar 

  76. Sozzani S, Luini W, Bianchi G, et al. The viral chemokine macrophage inflammatory protein-II is a selective Th2 chemoattractant. Blood 1998;92:4036–41039.

    CAS  PubMed  Google Scholar 

  77. Senkevich TG, Bugert JJ, Sisler JR, Koonin EV, Darai G, Moss B. Genome sequence of a human tumorigenic poxvirus: prediction of specific host response evasion genes. Science 1996;273:813–816.

    CAS  PubMed  Google Scholar 

  78. Krathwohl MD, Hromas R, Brown DR, Broxmeyer HE, Fife KH. Functional characterization of the C-C chemokine-like molecules encoded by molluscum contagiosum virus types 1 and 2. Proc Natl Acad Sci USA 1997;94:9875–9880.

    CAS  PubMed  Google Scholar 

  79. Damon I, Murphy PM, Moss B. Broad spectrum chemokine antagonistic activity of a human poxvirus chemokine homolog. Proc Natl Acad Sci USA 1998; 95:6403–6407.

    CAS  PubMed  Google Scholar 

  80. Luttichau HR, Stine J, Boesen TP, et al. A highly selective CC chemokine receptor (CCR)8 antagonist encoded by the poxvirus molluscum contagiosum. J Exp Med 2000;191:171–180.

    CAS  PubMed  Google Scholar 

  81. Tiffany HL, Lautens LL, Gao JL, et al. Identification of CCR8: a human monocyte and thymus receptor for the CC chemokine 1-309. J Exp Med 1997;186: 165–170.

    CAS  PubMed  Google Scholar 

  82. Garlisi CG, Xiao H, Tian F, et al. The assignment of chemokine-chemokine receptor pairs: TARC and MIP-1 beta are not ligands for human CC-chemokine receptor 8. Eur J Immunol 1999;29:3210–3215.

    CAS  PubMed  Google Scholar 

  83. Howard OM, Dong HF, Shirakawa AK, Oppenheim JJ. LEC induces chemotaxis and adhesion by interacting with CCR1 and CCR8. Blood 2000;96:840–845.

    CAS  PubMed  Google Scholar 

  84. Lee HJ, Essani K, Smith GL. The genome sequence of Yaba-like disease virus, a yatapoxvirus. Virology 2001;281:170–192.

    CAS  PubMed  Google Scholar 

  85. Najarro P, Lee HJ, Fox J, Pease J, Smith GL. Yaba-like disease virus protein 7L is a cell-surface receptor for chemokine CCL1. J Gen Virol 2003;84:3325–3336.

    CAS  PubMed  Google Scholar 

  86. Albini A, Benelli R, Presta M, et al. HIV-tat protein is a heparin-binding angiogenic growth factor. Oncogene 1996; 12:289–297.

    CAS  PubMed  Google Scholar 

  87. Brake DA, Debouck C, Biesecker G. Identification of an Arg-Gly-Asp (RGD) cell adhesion site in human immunodeficiency virus type 1 transactivation protein, tat. J Cell Biol 1990; 111:1275–1281.

    CAS  PubMed  Google Scholar 

  88. Benelli R, Barbero A, Ferrini S, et al. Human immunodeficiency virus transactivator protein (Tat) stimulates chemotaxis, calcium mobilization, and activation of human polymorphonuclear leukocytes: implications for Tat-mediated pathogenesis. J Infect Dis 2000;182:1643–1651.

    CAS  PubMed  Google Scholar 

  89. de Paulis A, De Palma R, Di Gioia L, et al. Tat protein is an HIV-1-encoded beta-chemokine homolog that promotes migration and up-regulates CCR3 expression on human Fc epsilon RI+ cells. J Immunol 2000;165:7171–7179.

    PubMed  Google Scholar 

  90. Albini A, Ferrini S, Benelli R, et al. HIV-1 Tat protein mimicry of chemokines. ProcNatlAcad Sci USA 1998;95:13,153–13,158.

    CAS  Google Scholar 

  91. Xiao H, Neuveut C, Tiffany HL, et al. Selective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1. Proc Natl Acad Sci USA 2000;97:11,466–11,471.

    CAS  PubMed  Google Scholar 

  92. Ghezzi S, Noonan DM, Aluigi MG, et al. Inhibition of CXCR4-dependent HIV-1 infection by extracellular HIV-1 Tat. Biochem Biophys Res Commun 2000;270:992–996.

    CAS  PubMed  Google Scholar 

  93. Aliberti J, Valenzuela JG, Carruthers VB, et al. Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nat Immunol 2003;4:485–490.

    CAS  PubMed  Google Scholar 

  94. Golding H, Aliberti J, King LR, et al. Inhibition of HIV-1 infection by a CCR5-binding cyclophilin from Toxoplasma gondii. Blood 2003;102:3280–3286.

    CAS  PubMed  Google Scholar 

  95. Alcami A, Koszinowski UH. Viral mechanisms of immune evasion. Trends Microbiol 2000;8(9):410–418.

    CAS  PubMed  Google Scholar 

  96. Lalani AS, Graham K, Mossman K, et al. The purified myxoma virus gamma interferon receptor homolog M-T7 interacts with the heparin-binding domains of chemokines. J Virol 1997;71:4356–4363.

    CAS  PubMed  Google Scholar 

  97. Alcami A, Symons JA, Collins PD, Williams TJ, Smith GL. Blockade of chemokine activity by a soluble chemokine binding protein from vaccinia virus. J Immunol 1998; 160:624–633.

    CAS  PubMed  Google Scholar 

  98. Parry CM, Simas JP, Smith VP, et al. A broad spectrum secreted chemokine binding protein encoded by a herpesvirus. J Exp Med 2000;191:573–578.

    CAS  PubMed  Google Scholar 

  99. van Berkel V, Barrett J, Tiffany HL, et al. Identification of a gamma herpesvirus selective chemokine binding protein that inhibits chemokine action. J Virol 2000;74:6741–6747.

    PubMed  Google Scholar 

  100. Webb LM, Clark-Lewis I, Alcami A. The gammaherpesvirus chemokine binding protein binds to the N terminus of CXCL8. J Virol 2003;77:8588–8592.

    CAS  PubMed  Google Scholar 

  101. Webb LM, Smith VP, Alcami A. The gammaherpesvirus chemokine binding protein can inhibit the interaction of chemokines with glycosaminoglycans. FASEB J 2004;18:571–573.

    CAS  PubMed  Google Scholar 

  102. Carfi A, Smith CA, Smolak PJ, McGrew J, Wiley DC. Structure of a soluble secreted chemokine inhibitor vCCI (p35) from cowpox virus. Proc Natl Acad Sci USA 1999;96:12,379–12,383.

    CAS  PubMed  Google Scholar 

  103. Jose PJ, Griffiths-Johnson DA, Collins PD, et al. Eotaxin: A potent eosinophil chemoattractant cytokine detected in a guinea-pig model of allergic airways inflammation. J Exp Med 1994; 179:881–887.

    CAS  PubMed  Google Scholar 

  104. Ponath PD, Qin S, Ringler DJ, et al. Cloning of the human eosinophil chemoattractant, eotaxin. Expression, receptor binding and functional properties suggest a mechanism for the selective recruitment of eosinophils. J Clin Invest 1996;97:604–612.

    CAS  PubMed  Google Scholar 

  105. Ponath PD, Qin S, Post TW, et al. Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. J Exp Med 1996;183:2437–2448.

    CAS  PubMed  Google Scholar 

  106. Uguccioni M, Mackay CR, Ochensberger B, et al. High expression of the chemokine receptor CCR3 in human blood basophils. Role in activation by eotaxin, MCP-, and other chemokines. J Clin Invest 1997; 100:1137–1143.

    CAS  PubMed  Google Scholar 

  107. Ochi H, Hirani WM, Yuan Q, Friend DS, Austen KF, Boyce JA. T helper cell type 2 cytokine-mediated comitogenic responses and CCR3 expression during differentiation of human mast cells in vitro. J Exp Med 1999; 190:267–280.

    CAS  PubMed  Google Scholar 

  108. Sallusto F, Mackay CR, Lanzavecchia A. Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 1997;277:2005–2007.

    CAS  PubMed  Google Scholar 

  109. Kitaura M, Nakajima T, Imai T, et al. Molecular cloning of human eotaxin, an eosinophil-selective CC chemokine, and identification of a specific eosinophil eotaxin receptor, CC chemokine receptor 3. J Biol Chem 1996;271:7725–7730.

    CAS  PubMed  Google Scholar 

  110. Humbles AA, Lu B, Friend DS, et al. The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc Natl Acad Sci USA 2002;99:1479–1484.

    CAS  PubMed  Google Scholar 

  111. Chan MS, Medley GF, Jamison D, Bundy DA. The evaluation of potential global morbidity attributable to intestinal nematode infections. Parasitology 1994;109:373–387.

    PubMed  Google Scholar 

  112. Culley FJ, Brown A, Conroy DM, Sabroe I, Pritchard DI, Williams TJ. Eotaxin is specifically cleaved by hookworm metalloproteases preventing its action in vitro and in vivo. J Immunol 2000; 165:6447–6453.

    CAS  PubMed  Google Scholar 

  113. Gurrath M. Peptide-binding G protein-coupled receptors: new opportunities for drug design. Curr Med Chem 2001;8:1605–1648.

    CAS  PubMed  Google Scholar 

  114. Schols D. HIV co-receptors as targets for antiviral therapy. Curr Top Med Chem 2004;4:883–893.

    CAS  PubMed  Google Scholar 

  115. Hesselgesser J, Chitnis CE, Miller LH, et al. A mutant of melanoma growth stimulating activity does not activate neutrophils but blocks erythrocyte invasion by malaria. J Biol Chem 1995;270:11,472–11,476.

    CAS  PubMed  Google Scholar 

  116. Dabbagh K, Xiao Y, Smith C, et al. Local blockade of allergic airway hyperreactivity and inflammation by the poxvirus-derived pan-CC-chemokine inhibitor vCCI. J Immunol 2000; 165:3418–3422.

    CAS  PubMed  Google Scholar 

  117. Hibbitts S, Reeves JD, Simmons G, et al. Coreceptor ligand inhibition of fetal brain cell infection by HIV type 1. AIDS Res Hum Retroviruses 1999;15:989–1000.

    CAS  PubMed  Google Scholar 

  118. Chen S, Bacon KB, Li L, et al. In vivo inhibition of CC and CX3C chemokine induced leukocyte infiltration and attenuation of glomerulonephritis in Wistar-Kyoto (WKY) rats by vMIP-II. J Exp Med 1998;188:193–198.

    CAS  PubMed  Google Scholar 

  119. Ghirnikar RS, Lee YL, Eng LF. Chemokine antagonist infusion attenuates cellular infiltration following spinal cord contusion injury in rat. J Neurosci Res 2000;59:63–73.

    CAS  PubMed  Google Scholar 

  120. Lindow M, Nansen A, Bartholdy C, et al. The virus-encoded chemokine vMIPII inhibits virus-induced Tc1-driven inflammation. J Virol 2003;77: 7393–7400.

    CAS  PubMed  Google Scholar 

  121. DeBruyne LA, Li K, Bishop DK, Bromberg JS. Gene transfer of virally encoded chemokine antagonists vMIP-II and MC 148 prolongs cardiac allograft survival and inhibits donor-specific immunity. Gene Ther 2000;7:575–582.

    CAS  PubMed  Google Scholar 

  122. Ruffini PA, Biragyn A, Coscia M, et al. Genetic fusions with viral chemokines target delivery of nonimmunogenic antigen to trigger antitumor immunity independent of chemotaxis. J Leukoc Biol 2004;76:77–85.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Pease, J.E. (2007). Microbial Exploitation and Subversion of the Human Chemokine Network. In: House, R.V., Descotes, J. (eds) Cytokines in Human Health. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1007/978-1-59745-350-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-350-9_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-467-8

  • Online ISBN: 978-1-59745-350-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics