Skip to main content

Yeast and Mammalian Two-Hybrid Systems for Studying Protein-Protein Interactions

  • Protocol
  • 1741 Accesses

Part of the book series: Methods in Molecularbiology™ ((MIMB,volume 383))

Abstract

An important step in the analysis of protein function is identification of the interaction partners of each protein. The two-hybrid system has been widely used to identify and explore protein-protein interactions. By using various two-hybrid systems, numerous protein interactions that regulate apoptosis signaling have been discovered that reveal unexpected functions of cancer-relevant proteins. Methods for performing two-hybrid experiments using either yeast or mammalian cells will be described in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245–246.

    Article  CAS  PubMed  Google Scholar 

  2. Aronheim, A., Zandi, E., Hennemann, H., Elledge, S. J., and Karin, M. (1997) Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol. Cell Biol. 17, 3094–3102.

    CAS  PubMed  Google Scholar 

  3. Mohler, W. A. and Blau, H. M. (1996) Gene expression and cell fusion analyzed by lacZ complementation in mammalian cells. Proc. Natl. Acad. Sci. USA 93, 12,423–12,437.

    Article  CAS  PubMed  Google Scholar 

  4. Blakely, B. T., Rossi, F. M., Tillotson, B., Palmer, M., Estelles, A., and Blau, H. M. (2000) Epidermal growth factor receptor dimerization monitored in live cells. Nat. Biotechnol. 18, 218–222.

    Article  CAS  PubMed  Google Scholar 

  5. Galarneau, A., Primeau, M., Trudeau, L. E., and Michnick, S. W. (2002) β-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nat. Biotechnol. 20, 619–622.

    Article  CAS  PubMed  Google Scholar 

  6. Gyuris, J., Golemis, E. A., Chertkov, H., and Brent, R. (1993) Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75, 791–803.

    Article  CAS  PubMed  Google Scholar 

  7. Estojak, J., Brent, R., and Golemis, E. A. (1995) Correlation of two-hybrid affinity data with in vitro measurements. Mol. Cell Biol. 15, 5820–5829.

    CAS  PubMed  Google Scholar 

  8. Vojtek, A. B., Hollenberg, S. M., and Cooper, J. A. (1993) Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74, 205–214.

    Article  CAS  PubMed  Google Scholar 

  9. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K., and Elledge, S. J. (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816.

    Article  CAS  PubMed  Google Scholar 

  10. Sadowski, I., Bell, B., Broad, P., and Hollis, M. (1992) GAL4 fusion vectors for expression in yeast or mammalian cells. Gene 118, 137–141.

    Article  CAS  PubMed  Google Scholar 

  11. Dang, C. V., Barrett, J., Villa-Garcia, M., Resar, L. M., Kato, G. J., and Fearon, E. R. (1991) Intracellular leucine zipper interactions suggest c-Myc hetero-oligomerization. Mol. Cell Biol. 11, 954–962.

    CAS  PubMed  Google Scholar 

  12. Fagan, R., Flint, K. J., and Jones, N. (1994) Phosphorylation of E2F-1 modulates its interaction with the retinoblastoma gene product and the adenoviral E4 19 kDa protein. Cell 78, 799–811.

    Article  CAS  PubMed  Google Scholar 

  13. Ito, H., Fukuda, Y., Murata, K., and Kimura, A. (1983) Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163–168.

    CAS  PubMed  Google Scholar 

  14. Schiestl, R. H. and Gietz, R. D. (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16, 339–346.

    Article  CAS  PubMed  Google Scholar 

  15. Brent, R. and Ptashne, M. (1985) A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43, 729–736.

    Article  CAS  PubMed  Google Scholar 

  16. Schneider, S., Buchert, M., and Hovens, C. M. (1996) An in vitro assay of β-galactosidase from yeast. Biotechniques 20, 960–962.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Matsuzawa, Si., Reed, J.C. (2007). Yeast and Mammalian Two-Hybrid Systems for Studying Protein-Protein Interactions. In: Fisher, P.B. (eds) Cancer Genomics and Proteomics. Methods in Molecularbiology™, vol 383. Humana Press. https://doi.org/10.1007/978-1-59745-335-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-335-6_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-504-0

  • Online ISBN: 978-1-59745-335-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics