Skip to main content

Whole-Genome Detection of Conditionally Essential and Dispensable Genes in Escherichia coli via Genetic Footprinting

  • Protocol
Microbial Gene Essentiality: Protocols and Bioinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 416))

Abstract

We present a whole-genome approach to genetic footprinting in Escherichia coli using Tn5-based transposons to determine gene essentiality. A population of cells is mutagenized and subjected to outgrowth under selective conditions. Transposon insertions in the surviving mutants are detected using nested polymerase chain reaction (PCR), agarose gel electrophoresis, and software-assisted PCR product size determination. Genomic addresses of these inserts are then mapped onto the E. coli genome sequence based on the PCR product lengths and the addresses of the corresponding genome-specific primers. Gene essentiality conclusions were drawn based on a semiautomatic analysis of the number and relative positions of inserts retained within each gene after selective outgrowth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, V., Botstein, D., and Brown, P. O. (1995) Genetic footprinting: a genomic strategy for determining a gene’s function given its sequence. Proc. Natl. Acad. Sci. U.S.A. 92, 6479–6483.

    Article  CAS  PubMed  Google Scholar 

  2. Smith, V., Chou, K. N., Lashkari, D., Botstein, D., and Brown, P. O. (1996) Functional analysis of the genes of yeast chromosome V by genetic footprinting. Science 274, 2069–2074.

    Article  CAS  PubMed  Google Scholar 

  3. Hutchison, C. A., Peterson, S. N., Gill, S. R., Cline, R. T., White, O., Fraser, C. M., et al. (1999) Global transposon mutagenesis and a minimal mycoplasma genome. Science 286, 2165–2169.

    Article  CAS  PubMed  Google Scholar 

  4. Reich, K. A., Chovan, L., and Hessler, P. (1999) Genome scanning in Haemophilus influenzae for identification of essential genes. J. Bacteriol. 181, 4961–4968.

    CAS  PubMed  Google Scholar 

  5. Akerley, B. J., Rubin, E. J., Novick, V. L., Amaya, K., Judson, N., and Mekalanos, J. J. (2002) A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl. Acad. Sci. U.S.A. 99, 966–971.

    Article  CAS  PubMed  Google Scholar 

  6. Sassetti, C. M., Boyd, D. H., and Rubin, E. J. (2001) Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. U.S.A. 98, 12712–12717.

    Article  CAS  PubMed  Google Scholar 

  7. Sassetti, C. M., Boyd, D. H., and Rubin, E. J. (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48, 77–84.

    Article  CAS  PubMed  Google Scholar 

  8. Sassetti, C. M., and Rubin, E. J. (2003) Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. U.S.A. 100, 12989–12994.

    Article  CAS  PubMed  Google Scholar 

  9. Wong, S. M., and Mekalanos, J. J. (2000) Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 97, 10191–10196.

    Article  CAS  PubMed  Google Scholar 

  10. Liberati, N. T., Urbach, J. M., Miyata, S., Lee, D. G., Drenkard, E., Wu, G., et al. (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc. Natl. Acad. Sci. U.S.A. 103, 2833–2838.

    Article  CAS  PubMed  Google Scholar 

  11. Jenks, P. J., Chevalier, C., Ecobichon, C., and Labigne, A. (2001) Identification of nonessential Helicobacter pylori genes using random mutagenesis and loop amplification. Res. Microbiol. 152, 725–734.

    Article  CAS  PubMed  Google Scholar 

  12. Kwon, Y. M., Kubena, L. F., Nisbet, D. J., and Ricke, S. C. (2003) Isolation of Salmonella typhimurium Tn5 mutants defective for survival on egg shell surface using transposon footprinting. J. Environ. Sci. Health B 38, 103–109.

    Article  CAS  PubMed  Google Scholar 

  13. Badarinarayana, V., Estep, P. W. 3rd, Shendure, J., Edwards, J., Tavazoie, S., Lam, F., and Church, G. M. (2001) Selection analyses of insertional mutants using subgenic-resolution arrays. Nat. Biotechnol. 19, 1060–1065.

    Article  CAS  PubMed  Google Scholar 

  14. Gerdes, S. Y., Scholle, M. D., D’Souza, M., Bernal, A., Baev, M. V., Farrell, M., et al. 2002. From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways. J. Bacteriol. 184, 4555–4572.

    Article  CAS  PubMed  Google Scholar 

  15. Hare, R. S., Walker, S. S., Dorman, T. E., Greene, J. R., Guzman, L. M., Kenney, T. J., et al. (2001) Genetic footprinting in bacteria. J. Bacteriol. 183, 1694–1706.

    Article  CAS  PubMed  Google Scholar 

  16. Winterberg, K. M., Luecke, J., Bruegl, A. S., and Reznikoff, W. S. (2005) Phenotypic screening of Escherichia coli K-12 Tn5 insertion libraries, using whole-genome oligonucleotide microarrays. Appl. Environ. Microbiol. 71, 451–459.

    Article  CAS  PubMed  Google Scholar 

  17. Gerdes, S., Scholle, M., Campbell, J., Balazsi, G., Ravasz, E., Daugherty, M., et al. (2003). Experimental determination and system-level analysis of essential genes in E. coli MG1655. J. Bacteriol. 185, 5673–5684.

    Article  CAS  PubMed  Google Scholar 

  18. Hamer, L., DeZwaan, T. M., Montenegro-Chamorro, M. V., Frank, S. A., and Hamer, J. E. (2001) Recent advances in large-scale transposon mutagenesis. Curr. Opin. Chem. Biol. 5, 67–73.

    Article  CAS  PubMed  Google Scholar 

  19. Hayes, F. (2003) Transposon-based strategies for microbial functional genomics and proteomics. Annu. Rev. Genet. 37, 3–29.

    Article  CAS  PubMed  Google Scholar 

  20. Haapa, S., Taira, S., Heikkinen, E., and Savilahti, E. (1999) An efficient and accurate integration of mini-Mu transposons in vitro: a general methodology for functional genetic analysis and molecular biology applications. Nucleic Acids Res. 27, 2777–2784.

    Article  CAS  PubMed  Google Scholar 

  21. Maekawa, T., Yanagihara, K., and Ohtsubo, E. (1996) A cell-free system of Tn3 transposition and transposition immunity. Genes Cells 1, 1007–1016.

    Article  CAS  PubMed  Google Scholar 

  22. Maekawa, T., Yanagihara, K., and Ohtsubo, E. (1996) Specific nicking at the 3′ ends of the terminal inverted repeat sequences in transposon Tn3 by transposase and an E. coli protein ACP. Genes Cells 1, 1017–1030.

    Article  CAS  PubMed  Google Scholar 

  23. Goryshin, I. Y., and Reznikoff, W. S. (1998) Tn5 in vitro transposition. J. Biol. Chem. 273, 7367–7374.

    Article  CAS  PubMed  Google Scholar 

  24. Reznikoff, W. S., Goryshin, I. Y., and Jendrisak, J. J. (2004) Tn5 as a molecular genetics tool: In vitro transposition and the coupling of in vitro technologies with in vivo transposition. Methods Mol. Biol. 260, 83–96.

    CAS  PubMed  Google Scholar 

  25. Bainton, R. J., Kubo, K. M., Feng, J. N., and Craig, N. L. (1993) Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell 72, 931–943.

    Article  CAS  PubMed  Google Scholar 

  26. Chalmers, R. M., and Kleckner, N. (1994) Tn10/IS10 transposase purification, activation, and in vitro reaction. J. Biol. Chem. 269, 8029–8035.

    CAS  PubMed  Google Scholar 

  27. Griffin, T. J. T., Parsons, L., Leschziner, A. E., DeVost, J., Derbyshire, K. M., and Grindley, N. D. (1999) In vitro transposition of Tn552: a tool for DNA sequencing and mutagenesis. Nucleic Acids Res. 27, 3859–3865.

    Article  CAS  PubMed  Google Scholar 

  28. Devine, S. E., and Boeke, J. D. (1994) Efficient integration of Artificial transposons into plasmid targets in vitro: a useful tool for DNA mapping, sequencing and genetic analysis. Nucleic Acids Res. 22, 3765–3772.

    Article  CAS  PubMed  Google Scholar 

  29. Lampe, D. J., Akerley, B. J., Rubin, E. J., Mekalanos, J. J., and Robertson, H. M. (1999) Hyperactive transposase mutants of the Himar1 mariner transposon. Proc. Natl. Acad. Sci. U.S.A. 96, 11428–11433.

    Article  CAS  PubMed  Google Scholar 

  30. Hoffman, L. M., Jendrisak, J. J., Meis, R. J., Goryshin, I. Y., and Reznikoff, W. S. (2000) Transposome insertional mutagenesis and direct sequencing of microbial genomes. Genetica 108, 19–24.

    Article  CAS  PubMed  Google Scholar 

  31. Goryshin, I. Y., Jendrisak, J., Hoffman, L. M., Meis, R., and Reznikoff, W. S. (2000) Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat. Biotechnol. 18, 97–100.

    Article  CAS  PubMed  Google Scholar 

  32. Butterfield, Y.S., Marra, M.A., Asano, J.K., Chan, S.Y., Guin, R., Krzywinski, M.I., et al. (2002) An efficient strategy for large-scale high-throughput transposon-mediated sequencing of cDNA clones. Nucleic Acids Res. 30, 2460–2468.

    Article  CAS  PubMed  Google Scholar 

  33. Bhasin, A., Goryshin, I. Y., Steiniger-White, M., York, D., and Reznikoff, W. S. (2000) Characterization of a Tn5 pre-cleavage synaptic complex. J. Mol. Biol. 302, 49–63.

    Article  CAS  PubMed  Google Scholar 

  34. Akerley, B. J., Rubin, E. J., Camilli, A., Lampe, D. J., Robertson, H. M., and Mekalanos, J. J. (1998) Systematic identification of essential genes by in vitro mariner mutagenesis. Proc. Natl. Acad. Sci. U.S.A. 95, 8927–8932.

    Article  CAS  PubMed  Google Scholar 

  35. Zhou, M., Bhasin, A., and Reznikoff, W. S. (1998) Molecular genetic analysis of transposase-end DNA sequence recognition: cooperativity of three adjacent base-pairs in specific interaction with a mutant Tn5 transposase. J. Mol. Biol. 276, 913–925.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Scholle, M.D., Gerdes, S.Y. (2008). Whole-Genome Detection of Conditionally Essential and Dispensable Genes in Escherichia coli via Genetic Footprinting. In: Osterman, A.L., Gerdes, S.Y. (eds) Microbial Gene Essentiality: Protocols and Bioinformatics. Methods in Molecular Biology™, vol 416. Humana Press. https://doi.org/10.1007/978-1-59745-321-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-321-9_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-378-7

  • Online ISBN: 978-1-59745-321-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics